Math, asked by HiraTayyab, 1 year ago

anyone help me this question please give correct answer
if root2-root3/3root2+2root3=a+broot6 where a and b are rational numbers, then find the values of a and b.​

Answers

Answered by Anonymous
5

Answer:

\blue{a=12/6}

\green{b=-5/6}

Step-by-step explanation:

 \frac{ \sqrt{2}  -   \sqrt{3} \ }{3 \sqrt{2}  + 2 \sqrt{3} }  = a + b \sqrt{6}

Rationalizing the LHS

 \frac{ \sqrt{2} -  \sqrt{3}   }{3 \sqrt{2} + 2 \sqrt{3}  }  \times  \frac{3 \sqrt{2}  - 2 \sqrt{3} }{3 \sqrt{2 }   - 2 \sqrt{3}  }  = a + b \sqrt{6}

using the identity

\green{(a+b)(a-b)=a^2-b^2}

 \frac{6 - 2 \sqrt{6} - 3 \sqrt{6} + 6  }{(3 \sqrt{2} ){}^{2}   - (2 \sqrt{3} ) {}^{2} }  = a + b \sqrt{6}

 \frac{12 - 5 \sqrt{6} }{18 - 12}  = a + b \sqrt{6}

 \frac{12 - 5 \sqrt{6} }{6}  = a + b \sqrt{6}

 \frac{12}{6}  -  \frac{5 \sqrt{6} }{6}  = a + b \sqrt{6}

a =  \frac{12}{6}  \:

b =    -  \frac{5}{6}

Answered by Anonymous
4

Answer:

Hey mate plzz refer to the attachment

Attachments:
Similar questions