Math, asked by nikhilmpgowda, 6 months ago

anyone in class 12th can help me in solving one inverse trigonometry question. (in attachment)​​

Attachments:

Answers

Answered by ravi2303kumar
1

Answer:

\frac{\pi }{4} + \frac{x}{2}

Step-by-step explanation:

tan⁻¹(\frac{(1+sinx)}{cosx})

= tan⁻¹(\frac{sin^{2} \frac{x}{2}+cos^{2}\frac{x}{2}+2sin\frac{x}{2}cos\frac{x}{2}}{cos^2\frac{x}{2}-sin^2\frac{x}{2}})     [ ∵ sin²α+cos²α = 1 ,sin2α = 2sinαcosα, & cos2α=cos²α-sin²α ]

= tan⁻¹(\frac{(sin\frac{x}{2}+cos\frac{x}{2})^2}  {(cos\frac{z}{2}+sin\frac{z}{2})(cos\frac{z}{2}-sin\frac{z}{2})})

= tan⁻¹(\frac{(sin\frac{x}{2}+cos\frac{x}{2})}  {(cos\frac{z}{2}-sin\frac{z}{2})})

= tan⁻¹( \frac{(sin\frac{x}{2}+cos\frac{x}{2})}  {(cos\frac{z}{2}-sin\frac{z}{2})} ÷ \frac{cos\frac{x}{2}}{cos\frac{x}{2}} )

= tan⁻¹(\frac{(  \frac{sin\frac{x}{2}}{cos\frac{x}{2}}  +  \frac{cos\frac{x}{2}}{cos\frac{x}{2}}    )}  {(  \frac{cos\frac{x}{2}}{cos\frac{x}{2}}        -    \frac{sin\frac{x}{2}}{cos\frac{x}{2}}     )})

= tan⁻¹(\frac{1+tan\frac{x}{2}} {1-tan\frac{x}{2}})

= tan⁻¹(\frac{tan\frac{\pi}{4}+tan\frac{x}{2}} {1-tan\frac{\pi}{4}tan\frac{x}{2}})       [ ∵ tan\frac{\pi}{4}=1 ]

= tan⁻¹(tan(\frac{\pi }{4} + \frac{x}{2} ))           [ ∵ tan(α+β)= \frac{tan\alpha +tan\beta}{1-tan\alpha tan\beta }]

= (\frac{\pi }{4} + \frac{x}{2} )

Similar questions