Math, asked by Anonymous, 7 months ago

anyone please solve these problems​

Attachments:

Answers

Answered by Anonymous
1

Step-by-step explanation:

\huge{\bold☘}\mathfrak\pink{\bold{\underline{{ ℘ɧεŋσɱεŋศɭ}}}}{\bold☘}☘

℘ɧεŋσɱεŋศɭ

\red{\bold{\underline{\underline{❥Question᎓}}}} </p><p>❥Question᎓

Q:-Find the value of

\sqrt{a - b}

a−b

if

\frac{8 + 3 \sqrt{7} }{8 - 3 \sqrt{7} } - \frac{8 - 3 \sqrt{7} }{8 + 3 \sqrt{7} } = a + b \sqrt{7}

\huge\tt\underline\blue{⛶Answer⛶ }

⛶Answer⛶

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

\bold{ \frac{8 + 3 \sqrt{7} }{8 - 3 \sqrt{7} } - \frac{8 - 3 \sqrt{7} }{8 + 3 \sqrt{7} } = a + b \sqrt{7}}

\bold{ \frac{(8 + 3 \sqrt{7})(8 + 3 \sqrt{7}) - [(8 - 3 \sqrt{7} )(8 - 3 \sqrt{7}) ]}{(8 + 3 \sqrt{7} )(8 - 3 \sqrt{7} )}}

\bold{ {(a + b)}^{2} - {(a - b)}^{2} =

\bold{\frac{4 \times 8 \sqrt{7} }{ {(8)}^{2} - {(3 \sqrt{7}) }^{2} } = a + b \sqrt{7} }

\bold{\frac{32 \sqrt{7} }{64 - 63} = a + b \sqrt{7}}

64−63

32

7

=a+b

7

\bold{ \frac{32 \sqrt{7} }{1} = a + b \sqrt{7}}

{7} = a + b \sqrt{7}}[/tex]⟹32

7

\bold{0 + 32 \sqrt{7} = a + b \sqrt{7} }⟹0+32

\bold{\red{On \:comparing\: both \:sides:-}}Oncomparingbothsides:−

\bold{a = 0 \: and \: b = 32}⟹a=0andb=32

\bold{now \: \sqrt{a - b} = \sqrt{0 - 32} = \sqrt{ - 32 } = \sqrt{ - 2 \times 16} = 4 \sqrt{ - 2} = 4 \sqrt{2} i \: [( {i}^{2} = - 1)}⟹now

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Answered by XxMrGlamorousXx
0

Answer:

⟹\bold{ \frac{8 + 3 \sqrt{7} }{8 - 3 \sqrt{7} } - \frac{8 - 3 \sqrt{7} }{8 + 3 \sqrt{7} } = a + b \sqrt{7}}8−378+37−8+378−37=a+b7 ⟹</p><p></p><p>⟹\bold{ \frac{(8 + 3 \sqrt{7})(8 + 3 \sqrt{7}) - [(8 - 3 \sqrt{7} )(8 - 3 \sqrt{7}) ]}{(8 + 3 \sqrt{7} )(8 - 3 \sqrt{7} )}}(8+37)(8−37)(8+37)(8+37)−[(8−37)(8−37)] ⟹</p><p></p><p>∵\bold{ {(a + b)}^{2} - {(a - b)}^{2} =</p><p></p><p>⟹ \bold{\frac{4 \times 8 \sqrt{7} }{ {(8)}^{2} - {(3 \sqrt{7}) }^{2} } = a + b \sqrt{7} }(8)2−(37)24×87=a+b7 ⟹</p><p></p><p>⟹ \bold{\frac{32 \sqrt{7} }{64 - 63} = a + b \sqrt{7}}64−63327=a+b7 ⟹</p><p></p><p>64−63</p><p></p><p>32</p><p></p><p>7</p><p></p><p>=a+b</p><p></p><p>7</p><p></p><p>⟹\bold{ \frac{32 \sqrt{7} }{1} = a + b \sqrt{7}}1327=a+b7 ⟹</p><p></p><p>{7} = a + b \sqrt{7}}⟹32

7

⟹\bold{0 + 32 \sqrt{7} = a + b \sqrt{7} }0+327=a+b7 ⟹0+32

\bold{\red{On \:comparing\: both \:sides:-}}Oncomparingbothsides:− Oncomparingbothsides:−

⟹\bold{a = 0 \: and \: b = 32}a=0andb=32 ⟹a=0andb=32

⟹\bold{now \: \sqrt{a - b} = \sqrt{0 - 32} = \sqrt{ - 32 } = \sqrt{ - 2 \times 16} = 4 \sqrt{ - 2} = 4 \sqrt{2} i \: [( {i}^{2} = - 1)}nowa−b=0−32=−32=−2×16=4−2

[/tex]

Similar questions