Math, asked by nandanipriya2005, 7 months ago

anyone solve this cant understand the last part.​

Attachments:

Answers

Answered by sritarutvik
1

Step-by-step explanation:

secA-tanA /secA+tanA

=(secA-tanA /secA+tanA)(secA-tanA /secA-tanA)

=(secA-tanA)^2 /(sec^2A-tan^2A)

=(secA-tanA)^2 /1 (since sec^2A-tan^2A=1)

=(secA-tanA)^2

root(secA-tanA /secA+tanA)=root(secA-tanA)^2

=secA-tanA

cosecA-cotA / cosecA+cotA

=(cosecA-cotA / cosecA+cotA)(cosecA-cotA / cosecA-cotA)

=(cosecA-cotA)^2 /( cosec^2A-cot^2A)

=(cosecA-cotA)^2 / 1 (since cosec^2A-cot^2A=1)

=(cosecA-cotA)^2

root(cosecA-cotA / cosecA+cotA)=root(cosecA-cotA)^2

=cosecA-cotA

root(secA-tanA /secA+tanA) × (root(cosecA-cotA / cosecA+cotA)

=(secA-tanA) × (cosecA-cotA)

=(1/cosA - sinA/cosA)(1/sinA -cosA/sinA)

=((1-sinA)/cosA) ((1-cosA)/sinA)

=(1-sinA)(1-cosA)/cosAsinA

= ((1-cosA)/cosA) ((1-sinA)/sinA)

=(1/cosA -1) (1/sinA -1)

=(secA-1)(cosecA-1)

Similar questions