Math, asked by symashah000, 1 month ago

Anyone who can help please fast​

Attachments:

Answers

Answered by mathdude500
1

\large\underline{\sf{Given- }}

\rm :\longmapsto\:a : b = c : d

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:\dfrac{ {a}^{2}  + ac +  {c}^{2} }{ {a}^{2}  - ac +  {c}^{2} }  = \dfrac{ {b}^{2}  + bd +  {d}^{2} }{ {b}^{2}  - bd+  {d}^{2} }

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:a : b = c : d

It means,

\rm :\longmapsto\:\dfrac{a}{b}  = \dfrac{c}{d}

Let assume that

\rm :\longmapsto\:\dfrac{a}{b}  = \dfrac{c}{d}  = k

So, it implies

\rm :\longmapsto\:a = bk

\rm :\longmapsto\:c = dk

Consider,

LHS

\rm :\longmapsto\:\dfrac{ {a}^{2}  + ac +  {c}^{2} }{ {a}^{2}  - ac +  {c}^{2} }

On substituting the values of a and c, we get

\rm \:  =  \:  \: \dfrac{ {(bk)}^{2}  + (bk)(dk) +  {(dk)}^{2} }{{(bk)}^{2} - (bk)(dk) +  {(dk)}^{2}}

\rm \:  =  \:  \: \dfrac{ {b}^{2}  {k}^{2} + bd {k}^{2}   +  {d}^{2} {k}^{2} }{{b}^{2}  {k}^{2}  -  bd {k}^{2} + {d}^{2} {k}^{2}}

\rm \:  =  \:  \: \dfrac{ {k}^{2}  ({b}^{2} + bd+  {d}^{2})}{{k}^{2}({b}^{2} - bd  +  {d}^{2})}

\rm \:  =  \:  \: \dfrac{{b}^{2} + bd+  {d}^{2}}{{b}^{2} - bd  +  {d}^{2}}

\boxed{\boxed{\bf{Hence, Proved}}}

Additional Information :-

\rm :\longmapsto\:If  \: \dfrac{a}{b}  = \dfrac{c}{d} , \: then

\rm :\longmapsto\:\dfrac{a}{c}  = \dfrac{b}{d}  \: is \: called \: alternendo

\rm :\longmapsto\:\dfrac{b}{a}  = \dfrac{d}{c}  \: is \: called \: invertendo

\rm :\longmapsto\:\dfrac{a + b}{b}  = \dfrac{c + d}{d}  \: is \: called \: componendo

\rm :\longmapsto\:\dfrac{a  -  b}{b}  = \dfrac{c  -  d}{d}  \: is \: called \: dividendo

\rm :\longmapsto\:\dfrac{a  +  b}{a - b}  = \dfrac{c + d}{c - d}  \: is \: called \:componendo \: and \:  dividendo

Similar questions