Math, asked by pratapshahi329, 9 months ago

AOB is a straight line. OC is a ray .OD and OE are the bisectors of angle COA and angle COB respectively then what will be M angles DOE ?​

Answers

Answered by mysticd
6

 \underline { \blue {Given:}}

 AOB \:is \:a \: straight \:line. OC \:is \:a \:ray. \\OD \:and \:OE \:are \:the \: bisectors \:of \\\angle {COA} \: and \: \angle {COB} \: respectively.

 \red { To \:find \: \angle {DOE} = ? }

 \underline { \blue {Proof:}}

 \angle {AOB} = 180\degree \: (Straight \:angle )

 \implies \angle {AOC} + \angle {COB} = 180\degree \: ( Linear \:pair )

 \implies ( \angle {AOD} + \angle {DOC})+(\angle {COE} + \angle {EOB}) = 180\degree

 Given \: \blue { ( \angle {AOD} = \angle {DOC} = x )}

 and \: \blue { ( \angle {COE} = \angle {EOB} = y }

 \implies 2x + 2y = 180\degree

 \implies 2(x + y )= 180\degree

 \implies x + y = \frac{180\degree}{2}

 \implies \angle {DOE} = 90\degree

Therefore.,

 \red { \angle {DOE}} \green { = 90\degree}

•••♪

Attachments:
Similar questions