Math, asked by Edison3943, 1 year ago

Ap 5,12,19 has 50 terms find its last term and find the sum of its last 15 term

Answers

Answered by kartik2507
2

Answer:

last term = 348

sum of last 15 terms = 4485

Step-by-step explanation:

5, 12, 19,......

a = 5 d = 7

a50 is last term

= a + 49d

= 5 + 49(7)

= 5 + 343

= 348

to find sum of last 15 terms

let us take a = 348 d = -7 n = 15

Sn = n/2 (2a + (n-1)d)

 =  \frac{15}{2} (2(348) + (15 - 1)  \times - 7) \\  =  \frac{15}{2} (696 + 14( - 7)) \\  =  \frac{15}{2} (696 - 98) \\  =  \frac{15}{2}  \times 598 \\  = 15  \times 299 \\  = 4485

sum of last 15 terms is 4485

Answered by Anonymous
4

\textbf{\underline{\underline{According\:to\:the\:Question}}}

First term (a) = 5

Common difference (d) = 12 - 5 = 7

n = 50

Using formula we have

\tt{\underline{a_{n}=a+(n-1)d}}

\tt{\underline{a_{n}=5+(50-1)7}}

\tt{\underline{a_{n}=5+49\times 7}}

\tt{\underline{a_{n}=5+343}}

\tt{\underline{a_{n}=348}}

{\boxed{\sf\:{Sum\;of\;last\;25\;terms}}}

First term = 348

Common Difference = - 7

n term = 15

\tt{\rightarrow S_{n}=\dfrac{n}{2}[2a+(n-1)d]}

\tt{\rightarrow S_{15}=\dfrac{15}{2}[2(348)+(15-1)-7]}

\tt{\rightarrow S_{15}=7.5[696+(14\times -7)}

\tt{\rightarrow S_{15}=7.5[696-98]}

\tt{\rightarrow S_{15}=7.5\times 598}

\tt{\rightarrow S_{15}=4485}

{\boxed{\sf\:{Sum\;of\;last\;15^th \;term=4485}}}

Similar questions