apply division algorithm to find quotient qx and remainder rx on dividing fx by gx where fx = x^3-6x^2+11x-6 and gx =x^2+x+1
Answers
Answered by
81
on dividing f(x) by g(x)
______x-7______
x^2+x+1 ) x^3-6x^2+11x-6
x^3+x^2+x
(-) (-) (-)
___________
-7x^2+10x-6
-7x^2- 7x- 7
+ + +
__________
17x +1
________
using division algorithm
f(x) = q(x) g(x) + r(x)
=> x^3-6x^2+11x-6 = (x-7) (x^2+x+1) + (17x+1)
x^3-6x^2+11x-6
hope it helps you:)!!!
______x-7______
x^2+x+1 ) x^3-6x^2+11x-6
x^3+x^2+x
(-) (-) (-)
___________
-7x^2+10x-6
-7x^2- 7x- 7
+ + +
__________
17x +1
________
using division algorithm
f(x) = q(x) g(x) + r(x)
=> x^3-6x^2+11x-6 = (x-7) (x^2+x+1) + (17x+1)
x^3-6x^2+11x-6
hope it helps you:)!!!
Answered by
5
Answer:
Step-by-step explanation:
on dividing f(x) by g(x)
______x-7______
x^2+x+1 ) x^3-6x^2+11x-6
x^3+x^2+x
(-) (-) (-)
___________
-7x^2+10x-6
-7x^2- 7x- 7
+ + +
__________
17x +1
________
using division algorithm
f(x) = q(x) g(x) + r(x)
=> x^3-6x^2+11x-6 = (x-7) (x^2+x+1) + (17x+1)
x^3-6x^2+11x-6
hope it helps you:)!!!
XK
Similar questions