Math, asked by khushpreet7543, 9 months ago

Apply the division algorithm to find the quotient and remainder on dividing f(x) = x3-6x2+11x-6 by g(x) = x+2​

Answers

Answered by Anonymous
7

Answer:

Quotient=x²-8x+27

Remainder=-60

For EXPLANATION, see the attachment

IF YOU FOUND IT HELPFUL THEN PLS MARK AS BRAINLIEST

Attachments:
Answered by Anonymous
7

Answer:

GIVEN :

\sf f(x) \: = \: x^{3} \: - \: 6x^{2} \: + \: 11x \: - \: 6

\sf g(x) \: = \: x \: + \: 2

TO FIND :

Quotient = ?

Remainder = ?

SOLUTION :

Using division algorithm,

\sf f(x) \: = \: x^{3} \: - \: 6x^{2} \: + \: 11x \: - \: 6

 x^{3} \: - \: 6x^{2} \: 11x \: - \: 6 \: =</p><p> \: (x \: + \: 2) \: (ax^{2} \: + \: bx \: + \: c)</p><p> \: + \: k x^{3} \: - \: 6x^{2} </p><p>\: + \: 11x \: - \: 6 \: = \: [x(ax^{2} \: + \: bx \: + c) \: + \: 2 (ax^{2} \: + \: bx \: + c)]+k

x^{3} \: - \: 6x^{2} \: + \: 11x \: - \: 6 \: = (b \: + \: 2a)x^{2} \: + \: (c \: + \: 2b)x \: + \: (2c \: + \: k)

Now, comparing the coefficients of the variables,

\sf {a \: = \: 1}

\sf {b \: + \: 2a \: = \: -6}

\sf {b \: + \: (2 \times 1) \: = \: -6}

\sf {b \: = \: -6 \: - \: 2}

\sf \boxed {b \: = \: -8}

\sf {c \: + \: 2b \: = \: 11}

\sf {c \: + \: (2 \times -8) \: = \: 11}

\sf {c \: - 16 \: = \: 11}

\sf {c \: = \: 11 \: + \: 16}

\sf \boxed {c \: = \: 27}

\sf {2c \: + \: k \: = \: -6}

\sf {2 \: \times \: 27 \: + \: k \: = \: -6}

\sf {54 \: + \: k \: = \: -26}

\sf \boxed {k \: = \: -60}

Substituting the values in equation to get quotient and remainder,

\sf {q(x) \: ax^{2} \: + \: bx \: + c}

\sf \boxed {q(x) \: = \: x^{2} \: - \: 8x \: + \: 27}

\sf {r(x) \: = \: k}

\sf \boxed {r(x) \: = \: -60}

Similar questions