Math, asked by sanikabhosale42, 10 days ago

approximate value of 3√997​

Answers

Answered by poojasinha7048
0

Step-by-step explanation:

Given:

7tanθ=4

To find:

(7sinθ-3cosθ) / (7sinθ+3cosθ)

Solution:

We know that,

tanθ=\frac{perpendicular}{base}

base

perpendicular

We have,

7tanθ=4

tanθ=\frac{4}{7}=

7

4

So, we can say that perpendicular is 4units and base is 7units.

Now,

hypotenuse=\sqrt{(perpendicular)^2+(base)^2}hypotenuse=

(perpendicular)

2

+(base)

2

=\sqrt{4^2+7^2}=

4

2

+7

2

=\sqrt{16+49}=

16+49

=\sqrt{65}=

65

units

We know that,

sinθ=\frac{perpendicular}{hypotenuse}=

hypotenuse

perpendicular

=\frac{4}{\sqrt{65} }

65

4

And we know,

cosθ=\frac{base}{hypotenuse}=

hypotenuse

base

=\frac{7}{\sqrt{65} }

65

7

Now evaluating the numerator,

7sinθ-3cosθ

=7×\frac{4}{\sqrt{65} }

65

4

-4×\frac{7}{\sqrt{65} }

65

7

=\frac{28-21}{\sqrt{65} }

65

28−21

=\frac{7}{\sqrt{65} }=

65

7

Now, evaluating the denominator,

7sinθ+3cosθ

=7×\frac{4}{\sqrt{65} }

65

4

+4×\frac{7}{\sqrt{65} }

65

7

=\frac{28+21}{\sqrt{65} }

65

28+21

=\frac{49}{\sqrt{65} }=

65

49

So,

(7sinθ-3cosθ) / (7sinθ+3cosθ)

=\frac{\frac{7}{\sqrt{65} } }{\frac{49}{\sqrt{65} } }

65

49

65

7

=\frac{7}{\sqrt{65} }

65

7

×\frac{\sqrt{65} }{49}

49

65

=\frac{1}{7}=

7

1

Hence, the required value of (7sinθ-3cosθ) / (7sinθ+3cosθ) is \frac{1}{7}

7

1

.

Similar questions