area = 2.4 dm", height = 80 cm
Find the area of the triangle whose sides are 13 cm, 20 cm and 21 cm. Also find the altitude of
the triangle corresponding to the largest side.
Answers
Step-by-step explanation:
As given,
=> a = 13 cm
=> b = 20 cm
=> c = 21 cm
Now, We have to find Semi- Perimeter
=> S = a+b+c/2
=> S = 13+20+21/2
=> S = 54/2
=> S = 27
Now, Area of triangle,
= > area \: = \sqrt{s(s - a)(s - b)(s - c)}=>area=
s(s−a)(s−b)(s−c)
= > area = \sqrt{27(27 - 13)(27 - 20)(27 - 21)}=>area=
27(27−13)(27−20)(27−21)
= > area = \sqrt{27 \times 14 \times 7 \times 6}=>area=
27×14×7×6
= > area = \sqrt{3 \times 3 \times 3 \times 7 \times 2 \times 7 \times 2 \times 3}=>area=
3×3×3×7×2×7×2×3
= > area = 3 \times 3 \times 7 \times 2=>area=3×3×7×2
= > area = 126 \: {cm}^{2}=>area=126cm
2
Now, We are required to find out Altitude :-
Here, longest side will 21 cm
Area of Triangle = 1/2 x b x h
=> 126 cm^2 = 1/2 x 20 x h
=> 126 cm^2 = 10 h
=> (126/10) cm = h
=> 12.6 cm = h
=> h = 12.6 cm