Math, asked by jeevanlatasehdev, 5 months ago

Area of a Ilgm is 48cm. Its base and altitude are in the ratio of 1: 3. Find the length of its base

Answers

Answered by sethrollins13
113

Given :

  • Area of Parallelogram is 48 cm² .
  • Base and Altitude are in the ratio 1:3 .

To Find :

  • Length of its base .

Solution :

\longmapsto\tt{Let\:Base\:of\:parallelogram\:be=1x}

\longmapsto\tt{Let\:Height\:of\:parallelogram\:be=3x}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Parallelogram=b\times{h}}

Putting Values :

\longmapsto\tt{48=1x\times{3x}}

\longmapsto\tt{48={3x}^{2}}

\longmapsto\tt{\cancel\dfrac{48}{3}={x}^{2}}

\longmapsto\tt{\sqrt{16}=x}

\longmapsto\tt\bf{4=x}

Value of x is 4 .

Therefore :

\longmapsto\tt{Base\:of\:parallelogram=1(4)}

\longmapsto\tt\bf{4\:cm}

\longmapsto\tt{Height\:of\:Parallelogram=3(4)}

\longmapsto\tt\bf{12\:cm}

_______________________

VERIFICATION :

\longmapsto\tt{48=1x\times{3x}}

\longmapsto\tt{48=1(4)\times{3(4)}}

\longmapsto\tt{48=4\times{12}}

\longmapsto\tt\bf{48=48}

HENCE VERIFIED

Answered by HA7SH
182

Step-by-step explanation:

______________________________

\text{\Large\underline{\red{Question:-}}}

\Longrightarrow ● Area of a Ilgm is 48cm. Its base and altitude are in the ratio of 1: 3. Find the length of its base.

\text{\Large\underline{\orange{To\ find:-}}}

● In this question we have to find the length of its base.

\text{\Large\underline{\green{Given:-}}}

\sf We\ have = \begin{cases} \sf\pink{●\ Area\ of\ parallelogram\ is\ 48cm^{2}.} \\ \\ \sf\pink{●\ Base\ and\ Altitude\ are\ in\ the\ ratio\ of\ 1\ :\ 3.} \end{cases}

\text{\large\underline{\blue{Formula\ to\ be\ used:-}}}

 \sf\orange{●\ Area\ of\ parallelogram\ =\ b\ \times\ h\ ●}

\text{\Large\underline{\purple{Solution:-}}}

The base and altitude are in the ratio of 1 : 3.

So here:-

 \sf{●\ Let\ the\ base\ of\ paralleogram\ =\ 1\ \times\ x\ =\ 1x.}

 \sf{●\ And\ let\ the\ height\ of\ parallelogram\ =\ 3\ \times\ x\ =\ 3x.}

By substituting the values:-

 \sf{●\ 48\ =\ 1x\ \times\ 3x}

 \sf{●\ 48\ =\ 3x^{2}}

 \sf{●\ \cancel \dfrac{48}{3}\ =\ x^{2}}

 \sf{●\ \sqrt{16}\ =\ x}

 \sf{●\ 4\ =\ x}

 \sf\pink{●\ x\ =\ 4.}

● The value of x is 4.

Now here:-

 \sf{●\ Base\ of\ parallelogram\ =\ 1x\ =\ 1\ \times\ 4\ =\ 4cm.}

 \sf{●\ Height\ of\ parallelogram\ =\ 3x\ =\ 3\ \times\ 4\ =\ 12cm.}

Hence:-

● The length of the base of parallelogram is 4cm.

______________________________

Similar questions