Math, asked by RakulPreetSingh4032, 1 year ago

area of a rectangle is 24cm2 and perimeter 20cm.length of the diagonal

Answers

Answered by AnjaliRani
3
if length will of 6 then breadth will be of 4 and vice versa
Attachments:
Answered by tardymanchester
3

Answer:

Diagonal of the rectangle =  \sqrt{52}

Step-by-step explanation:

Given : Area of rectangle = 24 cm^2

Perimeter of rectangle = 20 cm

To find : The diagonal of rectangle

Solution : Area of rectangle = length \times breadth=l\timesb=24cm^2 ......[1]

Perimeter of rectangle = 2(length+breadth)=2(l+b)=20cm ......[2]

From [1] we take l=\frac{24}{b} and put in [2]

2(l+b)=20cm

2(\frac{24}{b}+b)=20cm

\frac{24+b^2}{b}=10cm  (Take LCM)

b^2-10b+24

b^2-6b-4b+24 (Middle term split)

b(b-6)-4(b-6)

(b-6)(b-4)

b=6, b=4

if b=4 then l=24/4 = 6

if b=6 then l=24/6=4

There are two cases,

If b=4 and length = 6

Diagonal of the rectangle = \sqrt{l^2+b^2}

                                           = \sqrt{6^2+4^2}

                                           = \sqrt{36+16}=\sqrt{52}

If b=6 and length = 4

Diagonal of the rectangle = \sqrt{l^2+b^2}

                                           = \sqrt{4^2+6^2}

                                           = \sqrt{16+36}=\sqrt{52}

Therefore, Diagonal of the rectangle =  \sqrt{52}

Similar questions