Math, asked by devadath0077, 4 months ago

Area of a rhombus is 252 and one of the diagonals is 14 cm

Answers

Answered by PharohX
4

Step-by-step explanation:

 \sf \: i \: think \: u \: want \: other \: diagonal \: of \: rhombus

 \sf \: area \: of \: rhombum \:  = 252 \:  {cm}^{2}

 \sf \: first \: diagonal(d1) = 14

 \sf \:  let \: second \: diagonal \: is\:( d2)

 \sf \: area \:  = 252  \:  \:  \:  \:  \: \\  \sf \: d1 \times d2 = 252

 \sf \: d2 =  \frac{252}{14}  \\

 \sf \: d2 = 18 \: cm

Answered by thebrainlykapil
30

Correct Question :-

  • If Area of a rhombus is 252cm² and one of the diagonals is 14 cm then find the other diagonal .

 \\  \\

Given :-

  • Area of Rhombus = 252cm²
  • First Diagonal ( D1 ) = 14cm

 \\  \\

To Find :-

  • Second Diagonal of the Rhombus .

 \\  \\

Solution :-

 \\

Let Second Diagonal be D2

 \\

\quad {:} \longrightarrow \sf\boxed{\bf{Area \: of \: Rhombus \:= \:  \dfrac{1}{2}  \:  \times  \: (Product \: of \: Diagonals)  }}\\

\quad {:} \longrightarrow \sf{\sf{252 \:= \:  \dfrac{1}{2}  \:  \times  \: (14  \:  \times  \: D2) }}\\

\quad {:} \longrightarrow \sf{\sf{252 \:= \:  \dfrac{1}{\cancel2}  \:  \times  \: \cancel{14}  \:  \times  \: d2 }}\\

\quad {:} \longrightarrow \sf{\sf{252 \:= \: 7  \:  \times  \: d2 }}\\

\quad {:} \longrightarrow \sf{\sf{  \cancel\dfrac{252}{7}  \:=  \: d2 }}\\

\quad {:} \longrightarrow \sf{\bf{ 36\:=  \: Second \: Diagonal  }}\\

━━━━━━━━━━━━━━━━━━━━━━━━━

So, Second Diagonal = 36cm

━━━━━━━━━━━━━━━━━━━━━━━━━

Verification :-

 \\

 \longmapsto \sf\boxed{\bf{Area \: of \: Rhombus \:= \:  \dfrac{1}{2}  \:  \times  \: (Product \: of \: Diagonals)  }}\\

\longmapsto \sf{\sf{252 \:= \:  \dfrac{1}{2}  \:  \times  \: 14 \: \times \: 36  }}\\

\longmapsto \sf{\sf{252 \:= \:  \dfrac{1}{2}  \:  \times  \: 504 }}\\

\longmapsto \sf{\sf{252 \:= \:  \dfrac{1}{\cancel2}  \:  \times  \: \cancel{504} }}\\

\longmapsto \sf{\bf{252 \:= \: 252 }}\\

Hence, Proved

━━━━━━━━━━━━━━━━━━━━━━━━━


thebrainlykapil: Thanks :)
Similar questions