Math, asked by Abhigyan6923, 1 month ago

area of a sector of central angle 120 in a circle of radius 3 cm

Answers

Answered by vyshnavishymabaiju
1

Answer:

\frac{66}{7}cm^{2}

Step-by-step explanation:

Area of sector =\frac{ \pi  r^{2}   }{360}

                        = \frac{\frac{22}{7}*3*3*120}{360}

                        = \frac{66}{7}

Answered by Yugant1913
9

\huge\boxed{\underline{\bf { \red S \green o \pink L \blue u \orange T \purple i\red O \pink n \green{..}}}}\\

Step-by-step explanation:

\sf\mathbb\color{red} {Given, }

  • Area of central angle 120°
  • A circle of radius 3cm

\sf\mathbb\color{lightgreen} {Solution}

The area of the sector with a central angle and radius value is given by :\sf\mathbb\color{green} { \frac{n}{360} \pi {r}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf\mathbb\color{blue} { = \frac{120}{360}  \times \pi \times  {(3)}^{2}  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf\mathbb\color{blue} { =  \frac{120}{360}  \times \pi \times 3 \times 3}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf\mathbb\color{blue} { =  \frac{120}{120}  \times \pi \times 3}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf\mathbb\color{blue} { =  \frac{120}{40}  \times \pi}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf\mathbb\color{blue} { = 3\pi \:cm² } \:  \:  \:  \:  \:  \:  \: \sf\mathbb\color{green} {answer}

Similar questions