Math, asked by shivam2133, 1 year ago

area of trapezium is 360 CM ^2 if parallel sides are 17 , 20 find height​

Answers

Answered by HappiestWriter012
2
 \sf \: Answer \: :


Given,

Area of trapezium = 360 cm²

Parallel sides are 17, 20 cm.

We know that,

Area of trapezium =  \frac{1}{2} h(a + b)

So,

360 = 1/2 ( h) ( 17 + 20)

720 = h ( 37)

h = 46. 48 ( approximately).

Therefore, Height of the trapezium is 46.48 cm respectively
Answered by Anonymous
30

Answer:

⋆ DIAGRAM :

\setlength{\unitlength}{1.2cm}\begin{picture}(8,2)\thicklines\put(8.6,3){\large{A}}\put(7.7,0.9){\large{B}}\put(10,0.7){\sf{\large{20 cm}}}\put(10,3.1){\sf{\large{17 cm}}}\put(13.1,0.9){\large{C}}\put(11.8,0.7){\large{M}}\put(8,1){\line(1,0){5}}\put(12,1){\line(0,2){2}}\put(9,3){\line(3,0){3}}\put(11,1.8){\sf{\large{Height}}}\put(13,1){\line(-1,2){1}}\put(8,1){\line(1,2){1}}\put(12.1,3){\large{D}}\end{picture}

\rule{150}{1}

\underline{\bigstar\:\:\textsf{According to the Question :}}

:\implies\sf Area=\dfrac{1}{2} \times Height \times (Sum\:of\:Parallel\:Sides)\\\\\\:\implies\sf 360\:cm^2=\dfrac{1}{2} \times Height \times (17\:cm+20\:cm)\\\\\\:\implies\sf 360\:cm^2 \times 2=Height \times 37\:cm\\\\\\:\implies\sf 720\:cm^2=Height \times 37\:cm\\\\\\:\implies\sf \dfrac{720\:cm^2}{37\:cm}=Height\\\\\\:\implies\underline{\boxed{\textsf{\textbf{Height $\approx$ 19.45 cm}}}}

Similar questions