Math, asked by shashanks30, 6 months ago

Arrange the fractions 1/3,2/5,3/4 and 1/6 in ascending order​

Answers

Answered by JuniorBrainly100
4

Given:-

  • Arrange the fractions 1/3,2/5,3/4 and 1/6 in ascending order.

Solution:-

  •  =  >  \frac{1}{3}  -  \frac{2}{5} -  \frac{3}{4} -  \frac{1}{6} \\  \\  \\
  • \small\bold{L.C.M. of denominators}

2 |3 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 6| \\  \\  \\  3|3 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 3|  \\  \\  \\  |1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 1| \\  \\  \\  =  > 2 \times 3 \times 5 \times 2 \\  \\  \\  =  > 60

\small\bold{Now, \: make \: the \: denominators \: same}

  •  =  >  \frac{1}{3} =  \frac{1 \times 20}{3 \times 20} =  \frac{20}{60} \\  \\  \\  =  >  \frac{2}{5} =  \frac{2 \times12 }{5 \times 12} =  \frac{24}{60} \\  \\  \\  =  >      \frac{3}{4} =  \frac{3 \times 15}{4 \times 15} =  \frac{45}{60} \\  \\  \\  =  >   \frac{1}{6} =  \frac{1 \times 10}{6 \times 10} =   \frac{10}{60}

\small\bold{So \: ascending \: order \: is}

 \\  \\  \\   =  > \frac{10}{60} <  \frac{20}{60} <  \frac{24}{60}  <  \frac{45}{60}   \\  \\  \\

 \\  \\  \\  =  >  \frac{1}{6} <  \frac{1}{3} <  \frac{2}{5} <  \frac{3}{4} \\  \\  \\

Explanation:-

  • First of all to arrange fractions in any order with different denominators.

  • The denominators must be changed to equivalent.

  • For that we first found the l.c.m. and then made the denominators same as l.c.m. and also multiplied in numerators accordingly.

  • And then arranged them from smaller to greater.

Hope it helped!

Similar questions