Math, asked by adyakumari96089, 1 month ago

Arrange the rational number -3/7, 7/-10, -5/6 in ascending order​

Answers

Answered by gauri1910
3

Answer:

-3/7 < 7/-10 < -5/6

Step-by-step explanation:

-3/7 , 7/-10 , -5/6

= -3/7 , -7/10 , -5/6

 LCM of 7, 10 & 6 = 420

 -3/7× 60/60= -180/420

 -7/10× 42/42= -294/420

 -5/6× 70/70= -350/420

 -180/420 < -294/420 < -350/420

therefore, -3/7 < 7/-10 < -5/6

Answered by Sɴɪɢᴅʜᴀ
583

Given:

 \circ  \:  \: \sf Arrange \:  the \:rational  \: number   \:   \dfrac{ - 3}{7} , \:   \dfrac{7}{ - 10} , \:  \dfrac{ - 5}{6} \:  \:  in \:  ascending  \: order

Solution:

First we have to find the L.C.M of the denominators 7, 10 and 6.

 \tt{\begin{lgathered} \begin{array}{c | c} \underline 2&amp; \underline{7,10,6} \\  &amp; 7,5,3 \end{array}\end{lgathered} }\\  \\  \\  \sf \therefore \:  \:  \:  \: L.C.M \:  = 2 \times 7 \times 5 \times 3 = 210 \\  \\

Now,

  \\ \circ  \:  \:  \:  \tt   \dfrac{ - 3}{7}  =  \frac{ - 3 \times 30}{7 \times 30}  =  \frac{ - 90}{210}  \\  \\  \\ \:    \circ \:  \:  \:  \tt  \dfrac{7}{ - 10} \:  =  \frac{7 \times ( - 21)}{( - 10) \times ( - 21)}  =  \frac{ - 147}{210}  \\  \\  \\    \circ \:  \:  \: \tt \dfrac{ - 5}{6} =  \frac{ - 5 \times 35}{6 \times 35}  =  \frac{ - 175}{210}  \\  \\  \:

 \\  \tt \:  \:  \therefore \:  \: \frac{ - 175}{210} \:  &lt;  \: \frac{ - 147} {210}  \:   &lt; \: \frac{ - 90}{210} \:  \\  \\  \\

 \sf \:  \:  \: Hence  \tt \:  \: \dfrac{ - 5}{6} \:  &lt;  \:    \dfrac{7}{ - 10}  \: &lt;   \: \dfrac{ - 3}{7}   \:

Similar questions