Math, asked by 2005omkumhar, 6 months ago

As observed from the top of a light house, 100 m high above sea level, the angles of depression of a ship, sailing directly towards it, changes form 30° to 60°. Find the distance travelled by the ship during the period of observation. (Use 3 = 1.73)​

Answers

Answered by Anonymous
89

Diagram:

\setlength{\unitlength}{1cm} \begin{picture}(6,6) \put(2, 2){\line(0, 1){5}}  \put(2, 2){\line(1,0){5}}  \put(7,2){\line( - 1,1){5}}  \put(2,7){\vector(1,0){3}}   \put(2,1.7){\vector(1,0){2}} \put(2,1.7){\vector( - 1,0){0.2}}\put(5,1.7){\vector(1,0){2}} \put(5,1.7){\vector( - 1,0){0.2}}  \put(2,7){\line(1, - 2){2.5}}  \put(1.7, 2){\sf B} \put(4,2.1){\sf C} \put(7,2.1){\sf D} \put(2,7.1){\sf A} \put(3,1.4){\sf y} \put(6,1.4){\sf x}  \put(3.7,2.3){${60}^{\circ}$} \put(6,2.3){${30}^{\circ}$}\put(2.3,6.7){${30}^{\circ}$}\put(2.5,6){${60}^{\circ}$} \put(1,4){\sf 100m} \end{picture}

Given:

  • Top of light House is 100m above sea level.
  • Angle of depression of a ship Changing from 30° to 60°

Find:

  • Distance Travelled by ship during this observation.

Solution:

Let, AB be the height of light house 100m

Let, BC = y and CD = x

 \sf In \: ABC, \dfrac{AB}{BC}  =  \tan  {60}^{\circ}  \\  \\  \\

 \sf \implies \dfrac{100}{y}  = \sqrt{3} \\  \\  \\

 \sf \implies y\sqrt{3} = 100 \\  \\  \\

 \sf \implies y  =  \dfrac{100}{\sqrt{3}} ....(i)\\  \\  \\

_________________________

 \sf In \: ABD, \dfrac{AB}{BD}  =  \tan  {30}^{\circ}  \\  \\  \\

 \sf \implies \dfrac{100}{y + x}  =  \dfrac{1}{\sqrt{3}} \\  \\  \\

 \sf \implies x + y  = 100\sqrt{3}\\  \\  \\

 \sf \implies x= 100\sqrt{3} - y.....(ii)\\  \\  \\

_________________________

Using eq(i) in eq(ii)

 \sf \dashrightarrow x= 100\sqrt{3} - y\\  \\  \\

 \sf \dashrightarrow x= 100\sqrt{3} -  \dfrac{100}{ \sqrt{3} } \\  \\  \\

\qquad ☯Taking L.C.M☯

 \sf \dashrightarrow x=\dfrac{100 \times 3 - 100}{ \sqrt{3} } \\  \\  \\

 \sf \dashrightarrow x=\dfrac{300  - 100}{ \sqrt{3} } \\  \\  \\

 \sf \dashrightarrow x=\dfrac{200}{ \sqrt{3} } \\  \\  \\

\qquad ☯Rationalising The Denominator☯

 \sf \dashrightarrow x=\dfrac{200}{ \sqrt{3} } \times  \dfrac{ \sqrt{3} }{ \sqrt{3} }  \\  \\  \\

 \sf \dashrightarrow x=\dfrac{200 \sqrt{3} }{3}\\  \\  \\

\qquad ☯Using given value of √3 = 1.73☯

 \sf \dashrightarrow x=\dfrac{200 \times 1.73}{3}\\  \\  \\

 \sf \dashrightarrow x=\dfrac{346}{3}\\  \\  \\

 \sf \dashrightarrow x=115.33m\\  \\  \\

Hence, Distance Travelled by the ship is 115.33m


Tomboyish44: Woah, awesome!
Similar questions