As observed from the top of the seventy five meter high light house from the sea level the angle of depression of the two ships are 30 and 45 .If one ship is extra behind the of others on the same side of the lighthouse find the distance between the two ships
Answers
Answered by
0
Answer:
Step-by-step explanation:
Let AB be the h of the light house
AB=h=75
C be the first ship
D be the second ship
Let distance between 1st ship and light house be x and 2nd ship and lighthouse be y
Tan theta =opp/ hyp
Tan 30°=1/root3
Therefore,
x/75=1/root3
This implies x=25root3
Similarly we find y=75
The distance between the ships is
DB-CB
=75-25root3
=25(3- root3)
=25root3(root3-1)
This is the solution i found
Similar questions