Aspinner of radius 7.5 sum is divided into 6 equal sectors. Find the area
Answers
Answer:
In circle ∠GOI=∠GOH=∠HOJ=∠JOL=∠LOK=∠KOI=60o360o=60o
In circle ∠GOI=∠GOH=∠HOJ=∠JOL=∠LOK=∠KOI=60o360o=60oNw consider triangle GOI4
In circle ∠GOI=∠GOH=∠HOJ=∠JOL=∠LOK=∠KOI=60o360o=60oNw consider triangle GOI4In ΔGOI,
In circle ∠GOI=∠GOH=∠HOJ=∠JOL=∠LOK=∠KOI=60o360o=60oNw consider triangle GOI4In ΔGOI,GO=OI (Radius)
In circle ∠GOI=∠GOH=∠HOJ=∠JOL=∠LOK=∠KOI=60o360o=60oNw consider triangle GOI4In ΔGOI,GO=OI (Radius)∠GOI=60o
In circle ∠GOI=∠GOH=∠HOJ=∠JOL=∠LOK=∠KOI=60o360o=60oNw consider triangle GOI4In ΔGOI,GO=OI (Radius)∠GOI=60oTherefore triangle GOI ids equilateral .
In circle ∠GOI=∠GOH=∠HOJ=∠JOL=∠LOK=∠KOI=60o360o=60oNw consider triangle GOI4In ΔGOI,GO=OI (Radius)∠GOI=60oTherefore triangle GOI ids equilateral .Hence, GI=GO=a
In circle ∠GOI=∠GOH=∠HOJ=∠JOL=∠LOK=∠KOI=60o360o=60oNw consider triangle GOI4In ΔGOI,GO=OI (Radius)∠GOI=60oTherefore triangle GOI ids equilateral .Hence, GI=GO=a Hence, GI=GH=HJ=JL=LK=KI=a
In circle ∠GOI=∠GOH=∠HOJ=∠JOL=∠LOK=∠KOI=60o360o=60oNw consider triangle GOI4In ΔGOI,GO=OI (Radius)∠GOI=60oTherefore triangle GOI ids equilateral .Hence, GI=GO=a Hence, GI=GH=HJ=JL=LK=KI=aNow area of the resulting figure is -
In circle ∠GOI=∠GOH=∠HOJ=∠JOL=∠LOK=∠KOI=60o360o=60oNw consider triangle GOI4In ΔGOI,GO=OI (Radius)∠GOI=60oTherefore triangle GOI ids equilateral .Hence, GI=GO=a Hence, GI=GH=HJ=JL=LK=KI=aNow area of the resulting figure is -area of circle with radius a+( area of the equilateral triangle with side a)×6
In circle ∠GOI=∠GOH=∠HOJ=∠JOL=∠LOK=∠KOI=60o360o=60oNw consider triangle GOI4In ΔGOI,GO=OI (Radius)∠GOI=60oTherefore triangle GOI ids equilateral .Hence, GI=GO=a Hence, GI=GH=HJ=JL=LK=KI=aNow area of the resulting figure is -area of circle with radius a+( area of the equilateral triangle with side a)×6=πa2+43a2×6
In circle ∠GOI=∠GOH=∠HOJ=∠JOL=∠LOK=∠KOI=60o360o=60oNw consider triangle GOI4In ΔGOI,GO=OI (Radius)∠GOI=60oTherefore triangle GOI ids equilateral .Hence, GI=GO=a Hence, GI=GH=HJ=JL=LK=KI=aNow area of the resulting figure is -area of circle with radius a+( area of the equilateral triangle with side a)×6=πa2+43a2×6=πa2+233a2
In circle ∠GOI=∠GOH=∠HOJ=∠JOL=∠LOK=∠KOI=60o360o=60oNw consider triangle GOI4In ΔGOI,GO=OI (Radius)∠GOI=60oTherefore triangle GOI ids equilateral .Hence, GI=GO=a Hence, GI=GH=HJ=JL=LK=KI=aNow area of the resulting figure is -area of circle with radius a+( area of the equilateral triangle with side a)×6=πa2+43a2×6=πa2+233a2=2a2(2π+33)