Physics, asked by expertguru8020, 9 months ago

Assertion : Pressure has the dimensions of energy density. Reason : Energy density = ("energy")/("volume")=(["ML"^(2)"T"^(-2)])/(["L"^(3)]) =["ML"^(-1)"T"^(-2)]="pressure"

Answers

Answered by amitkumar44481
0

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \tt{Yes, \red{ True.}} \\  \\ </p><p></p><p> \:  \:  \tt{[Pressure=  \frac{Energy}{ Volume}.]}

 \tt{{Pressure} =  \frac{ Force}{ Area}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \tt{ \frac{{M }^{1} {L}^{1}{ T}^{ - 2} }{ {L }^{2} }}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \tt{ {M }^{1} {L}^{ - 1}{ T}^{ - 2} }. \\  \\

 \tt{ \frac{ Energy }{Volume} =  \frac{ Force \times displacement} {L \times L \times L}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \tt{= \frac{ {M}^{1} {L }^{1} {T }^{ - 2} \times   L}{ L \times L \times L}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \tt{ {M }^{1} {L}^{ - 1}{ T}^{ - 2} }.  \\  \\

 \tt{We  \: can  \: say  \: that,}

 \tt{   \large{[ }  \frac{ Energy}{  Volume} =  \underline {Pressure}.}

Attachments:
Similar questions