Physics, asked by manoj900, 11 months ago

Force F and density D are related as F=(alpha)/(beta+sqrtd), Then find the dimensions of alpha and beta

Answers

Answered by Anonymous
3

\huge\fcolorbox{red}{pink}{Answer}

Relation:

 \dag \:   \boxed{ \rm\pink{F =  \frac{ \alpha}{ \beta +  \sqrt{D} } }} \:  \dag

Calculation:

 \implies \rm \:  \beta =  \sqrt{D }  =  {( {M}^{1}  {L}^{ - 3} )}^{ \frac{1}{2} }  \\  \\  \therefore \:  \underline{ \boxed{ \bold{ \rm{ \blue{ \beta =  {M}^{ \frac{1}{2} }{L}^{ \frac{ - 3}{2} }  } }}}} \\  \\  \implies \rm \:  \alpha = F \times  \beta = ( {M}^{1}  {L}^{1}  {T}^{ - 2} ) \times ( {M}^{ \frac{1}{2} }  {L}^{ \frac{ - 3}{2} } )  \\  \\  \therefore \:  \underline{ \boxed{ \bold{ \rm{ \orange{ \alpha =  {M}^{ \frac{3}{2} } {L}^{ \frac{ - 1}{2} }  {T}^{ - 2}  }}}}}

Answered by amitkumar44481
1

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{ \alpha  ={ M}^{ \frac{3}{2} }{ L}^{  - \frac{1}{2} } {T}^{ - 2}. }

Attachments:
Similar questions