Computer Science, asked by kesarapuprasad335, 10 months ago

Assume that a max-heap with 10^510 5 elements is stored in a complete 5-ary tree. Approximately how many comparisons a call to Insert() will make?

Answers

Answered by Anonymous
1

Answer:

// C++ program to demonstrate all operations of

// k-ary Heap

#include<bits/stdc++.h>

using namespace std;

// function to heapify (or restore the max- heap

// property). This is used to build a k-ary heap

// and in extractMin()

// att[] -- Array that stores heap

// len -- Size of array

// index -- index of element to be restored

// (or heapified)

void restoreDown(int arr[], int len, int index,

int k)

{

// child array to store indexes of all

// the children of given node

int child[k+1];

while (1)

{

// child[i]=-1 if the node is a leaf

// children (no children)

for (int i=1; i<=k; i++)

child[i] = ((k*index + i) < len) ?

(k*index + i) : -1;

// max_child stores the maximum child and

// max_child_index holds its index

int max_child = -1, max_child_index ;

// loop to find the maximum of all

// the children of a given node

for (int i=1; i<=k; i++)

{

if (child[i] != -1 &&

arr[child[i]] > max_child)

{

max_child_index = child[i];

max_child = arr[child[i]];

}

}

// leaf node

if (max_child == -1)

break;

// swap only if the key of max_child_index

// is greater than the key of node

if (arr[index] < arr[max_child_index])

swap(arr[index], arr[max_child_index]);

index = max_child_index;

}

}

// Restores a given node up in the heap. This is used

// in decreaseKey() and insert()

void restoreUp(int arr[], int index, int k)

{

// parent stores the index of the parent variable

// of the node

int parent = (index-1)/k;

// Loop should only run till root node in case the

// element inserted is the maximum restore up will

// send it to the root node

while (parent>=0)

{

if (arr[index] > arr[parent])

{

swap(arr[index], arr[parent]);

index = parent;

parent = (index -1)/k;

}

// node has been restored at the correct position

else

break;

}

}

// Function to build a heap of arr[0..n-1] and alue of k.

void buildHeap(int arr[], int n, int k)

{

// Heapify all internal nodes starting from last

// non-leaf node all the way upto the root node

// and calling restore down on each

for (int i= (n-1)/k; i>=0; i--)

restoreDown(arr, n, i, k);

}

// Function to insert a value in a heap. Parameters are

// the array, size of heap, value k and the element to

// be inserted

void insert(int arr[], int* n, int k, int elem)

{

// Put the new element in the last position

arr[*n] = elem;

// Increase heap size by 1

*n = *n+1;

// Call restoreUp on the last index

restoreUp(arr, *n-1, k);

}

// Function that returns the key of root node of

// the heap and then restores the heap property

// of the remaining nodes

int extractMax(int arr[], int* n, int k)

{

// Stores the key of root node to be returned

int max = arr[0];

// Copy the last node's key to the root node

arr[0] = arr[*n-1];

// Decrease heap size by 1

*n = *n-1;

// Call restoreDown on the root node to restore

// it to the correct position in the heap

restoreDown(arr, *n, 0, k);

return max;

}

// Driver program

int main()

{

const int capacity = 100;

int arr[capacity] = {4, 5, 6, 7, 8, 9, 10};

int n = 7;

int k = 3;

buildHeap(arr, n, k);

printf("Built Heap : \n");

for (int i=0; i<n; i++)

printf("%d ", arr[i]);

int element = 3;

insert(arr, &n, k, element);

printf("\n\nHeap after insertion of %d: \n",

element);

for (int i=0; i<n; i++)

printf("%d ", arr[i]);

printf("\n\nExtracted max is %d",

extractMax(arr, &n, k));

printf("\n\nHeap after extract max: \n");

for (int i=0; i<n; i++)

printf("%d ", arr[i]);

return 0;

Similar questions