Physics, asked by negisonam3733, 10 months ago

Assume that the frequency of the vibrating string depends on applied load, length of the string and mass per unit length.(linear mass density). derive the relation between them.

Answers

Answered by ayush8156
0

Answer:

The frequency of vibration of a stretched string(f) depends on length(l), tension(T) and mass per unit length(m) of the

Answered by sonuvuce
0

The relation is

\boxed{v=\frac{k}{l}\sqrt{\frac{T}{m}}}

Explanation:

Let the frequency of vibration v depends upon, length l, tension T and mass per unit length m in the following way

v=kl^aT^bm^c, where k is a constant

Dimensions of v = [T⁻¹]

Dimensions of l = [L]

Dimensions of T = [MLT⁻²]

Dimensions of m = [ML⁻¹]

Thus,

LHS Dimensions =RHS Dimensions

\implies [T^{-1}]=k[L]^a[MLT^{-2}]^b[ML^{-1}]^c

\implies [T^{-1}]=k[M]^{b+c}[L]^{a+b-c}[T]^{-2b}

Comparing the dimensions on both sides

We get

b+c=0   ............. (1)

a+b-c=0  ..............(2)

-2b=-1  ................... (3)

From eq (3)

b=\frac{1}{2}

Thus, from eq (1)

c=-\frac{1}{2}

And from eq (2)

a+\frac{1}{2}-(-\frac{1}{2})=0

\implies a+1=0

\implies a=-1

Thus, the relation becomes

v=kl^{-1}T^{1/2}m^{-1/2}

or, v=\frac{k}{l}(\frac{T}{m})^{1/2}

or, v=\frac{k}{l}\sqrt{\frac{T}{m}}

This is the required relation.

Know More:

Similar question

brainly.in/question/3322975

Similar questions