At a simple interest a sum amounts to rs 1012 in 2.5 yr and becomes rs 1057.54 in 4 yr what is the rate of interest.
Answers
Answered by
1
let the principal be P and rate be r%
ATQ
![1012 - p =\frac{ pr \times 2.5 }{100} \\ 101200 - 100p = 2.5pr \\ 101200 = 2.5pr + 100p \\ 101200 = p(2.5r + 100) \\ p = \frac{101200}{2.5r + 100} \\ \\ \\ \\ \\ 1057.54 - p = \frac{ pr \times 4 }{100} \\ 105754 - 100p = 4pr \\ 105754 = p(4r + 100) \\ 105754 = \frac{101200}{2.5r + 100} \times (4r + 100) \\ 264385r + 10575400 = 404800r + 10120000 \\404800r - 264385r = 10575400 - 10120000 \\ 140415r= 455400 \\ r = \frac{455400}{140415} = 3.24 \\ 1012 - p =\frac{ pr \times 2.5 }{100} \\ 101200 - 100p = 2.5pr \\ 101200 = 2.5pr + 100p \\ 101200 = p(2.5r + 100) \\ p = \frac{101200}{2.5r + 100} \\ \\ \\ \\ \\ 1057.54 - p = \frac{ pr \times 4 }{100} \\ 105754 - 100p = 4pr \\ 105754 = p(4r + 100) \\ 105754 = \frac{101200}{2.5r + 100} \times (4r + 100) \\ 264385r + 10575400 = 404800r + 10120000 \\404800r - 264385r = 10575400 - 10120000 \\ 140415r= 455400 \\ r = \frac{455400}{140415} = 3.24 \\](https://tex.z-dn.net/?f=1012+-+p+%3D%5Cfrac%7B+pr+%5Ctimes+2.5+%7D%7B100%7D++%5C%5C+101200+-+100p+%3D+2.5pr+%5C%5C+101200+%3D+2.5pr+%2B+100p+%5C%5C+101200+%3D+p%282.5r+%2B+100%29+%5C%5C+p+%3D++%5Cfrac%7B101200%7D%7B2.5r+%2B+100%7D++%5C%5C++%5C%5C++%5C%5C++%5C%5C++%5C%5C+1057.54+-+p+%3D+%5Cfrac%7B+pr+%5Ctimes+4+%7D%7B100%7D+%5C%5C+105754+-+100p+%3D+4pr+%5C%5C+105754+%3D+p%284r+%2B+100%29+%5C%5C+105754+%3D++%5Cfrac%7B101200%7D%7B2.5r+%2B+100%7D++%5Ctimes+%284r+%2B+100%29++%5C%5C+264385r+%2B+10575400+%3D+404800r+%2B+10120000+%5C%5C404800r+-++264385r+%3D+10575400+-+10120000+%5C%5C++140415r%3D+455400+%5C%5C+r+%3D++%5Cfrac%7B455400%7D%7B140415%7D++%3D+3.24+%5C%5C+)
ATQ
Similar questions