at maximum velocity the reaction follows kunetucs of what
Answers
Answer:
Two 20th century scientists, Leonor Michaelis and Maud Leonora Menten, proposed the model known as Michaelis-Menten Kinetics to account for enzymatic dynamics. The model serves to explain how an enzyme can cause kinetic rate enhancement of a reaction and explains how reaction rates depends on the concentration of enzyme and substrate.
Introduction
The general reaction scheme of an enzyme-catalyzed reaction is as follows:
E+S−→k1[ES]−→k2E+P(1)
The enzyme interacts with the substrate by binding to its active site to form the enzyme-substrate complex, ES. That reaction is followed by the decomposition of ES to regenerate the free enzyme, E, and the new product, P.
To begin our discussion of enzyme kinetics, let's define the number of moles of product (P) formed per time as V. The variable, V, is also referred to as the rate of catalysis of an enzyme. For different enzymes, V varies with the concentration of the substrate, S. At low S, V is linearly proportional to S, but when S is high relative to the amount of total enzyme, V is independent of S. Concentrations is important in determining the initial rate of an enzyme-catalyzed reaction. A more thorough explanation of enzyme rates can be found here: Definition of Reaction Rate.
To understand Michaelis-Menten Kinetics, we will use the general enzyme reaction scheme shown below, which includes the back reactions in addition the the forward reactions:
E+S−→k1[ES]−→k2E+P(2)
E+S←−k3[ES]←−k4E+P(3)
The table below defines each of the rate constants in the above scheme.
Table 1: Model parameters
k1
The binding of the enzyme to the substrate forming the enzyme substrate complex.
k2
Catalytic rate; the catalysis reaction producing the final reaction product and regenerating the free enzyme. This is the rate limiting step.
k3
The dissociation of the enzyme-substrate complex to free enzyme and substrate .
k4
The reverse reaction of catalysis.
Substrate Complex
E+S−→k1ES vo=k1[E][S]
ES−→k2E+S vo=k2[ES]
ES−→k3E+P vo=k3[ES]
E+P−→k4ES vo=k4[E][P]=0
The ES complex is formed by combining enzyme E with substrate S at rate constant k1. The ES complex can either dissociate to form EF (free enzyme) and S, or form product P at rate constant k2 and k3, respectively. The velocity equation can be derived in either of the 2 methods that follow.