@ Moderator
@ star
@ Best Users..⛹️ ️️️
please answer this question
in 2 min
please
Answers
Answer:
The French Revolution was a period of fundamental political and societal change in France that began with the Estates General of 1789 and ended in November 1799 with the formation of the French Consulate. Many of its ideas are considered fundamental principles of Western liberal democracy.
Given :-
\begin{gathered} \sf3 \begin{bmatrix} < /p > < p > \sf x & \sf y\\ < /p > < p > \sf z & \sf w < /p > < p > \end{bmatrix} = \begin{bmatrix} < /p > < p > \sf x & \sf 6\\ < /p > < p > \sf - 1 & \sf 2w < /p > < p > \end{bmatrix} + \begin{bmatrix} < /p > < p > \sf 4 & \sf x + y\\ < /p > < p > \sf z + w & \sf 3 < /p > < p > \end{bmatrix}\end{gathered}
3[
</p><p>x
</p><p>z
y
w</p><p>
]=[
</p><p>x
</p><p>−1
6
2w</p><p>
]+[
</p><p>4
</p><p>z+w
x+y
3</p><p>
]
To Find :-
Values of x, y and z
Solution :-
\begin{gathered}\sf3 \begin{bmatrix} < /p > < p > \sf x & \sf y\\ < /p > < p > \sf z & \sf w < /p > < p > \end{bmatrix} = \begin{bmatrix} < /p > < p > \sf x & \sf 6\\ < /p > < p > \sf - 1 & \sf 2w < /p > < p > \end{bmatrix} + \begin{bmatrix} < /p > < p > \sf 4 & \sf x + y\\ < /p > < p > \sf z + w & \sf 3 < /p > < p > \end{bmatrix}\end{gathered}
3[
</p><p>x
</p><p>z
y
w</p><p>
]=[
</p><p>x
</p><p>−1
6
2w</p><p>
]+[
</p><p>4
</p><p>z+w
x+y
3</p><p>
]
\begin{gathered} \sf : \implies\begin{bmatrix} < /p > < p > \sf 3x & \sf3 y\\ < /p > < p > \sf 3z & \sf3 w < /p > < p > \end{bmatrix} = \begin{bmatrix} < /p > < p > \sf x + 4 & \sf 6 + x + y\\ < /p > < p > \sf - 1 + z + w & \sf 2w + 3 < /p > < p > \end{bmatrix}\end{gathered}
:⟹[
</p><p>3x
</p><p>3z
3y
3w</p><p>
]=[
</p><p>x+4
</p><p>−1+z+w
6+x+y
2w+3</p><p>
]
Comparing the corresponding elements of these two matrices we get :-
\sf 3x = x + 43x=x+4
\sf : \implies 2x = 4:⟹2x=4
\bf : \implies x = 2:⟹x=2
\sf 3y = 6 + x + y3y=6+x+y
\sf : \implies 2y = 6 + 2:⟹2y=6+2
\sf : \implies 2y = 8:⟹2y=8
\bf : \implies y = 4:⟹y=4
\sf 3w = 2w + 33w=2w+3
\bf : \implies w = 3:⟹w=3
\sf 3z = - 1 + z + w3z=−1+z+w
\sf : \implies 2z = - 1 + 3:⟹2z=−1+3
\sf : \implies 2z = 2:⟹2z=2
\bf : \implies z = 1:⟹z=1
x = 2
y = 4
z = 1
w = 3