Math, asked by shivasinghmohan629, 1 month ago

@ Moderator

@ star

@ Best Users..‍⛹️‍‍ ️️️

please answer this question

in 2 min

please​​​​​​​​​​​​​​​​​​​​​​​​​

Attachments:

Answers

Answered by rapidninja2277
2

Answer:

The French Revolution was a period of fundamental political and societal change in France that began with the Estates General of 1789 and ended in November 1799 with the formation of the French Consulate. Many of its ideas are considered fundamental principles of Western liberal democracy.

Answered by ramroopbharati
0

Given :-

\begin{gathered} \sf3 \begin{bmatrix} < /p > < p > \sf x & \sf y\\ < /p > < p > \sf z & \sf w < /p > < p > \end{bmatrix} = \begin{bmatrix} < /p > < p > \sf x & \sf 6\\ < /p > < p > \sf - 1 & \sf 2w < /p > < p > \end{bmatrix} + \begin{bmatrix} < /p > < p > \sf 4 & \sf x + y\\ < /p > < p > \sf z + w & \sf 3 < /p > < p > \end{bmatrix}\end{gathered}

3[

</p><p>x

</p><p>z

y

w</p><p>

]=[

</p><p>x

</p><p>−1

6

2w</p><p>

]+[

</p><p>4

</p><p>z+w

x+y

3</p><p>

]

To Find :-

Values of x, y and z

Solution :-

\begin{gathered}\sf3 \begin{bmatrix} < /p > < p > \sf x & \sf y\\ < /p > < p > \sf z & \sf w < /p > < p > \end{bmatrix} = \begin{bmatrix} < /p > < p > \sf x & \sf 6\\ < /p > < p > \sf - 1 & \sf 2w < /p > < p > \end{bmatrix} + \begin{bmatrix} < /p > < p > \sf 4 & \sf x + y\\ < /p > < p > \sf z + w & \sf 3 < /p > < p > \end{bmatrix}\end{gathered}

3[

</p><p>x

</p><p>z

y

w</p><p>

]=[

</p><p>x

</p><p>−1

6

2w</p><p>

]+[

</p><p>4

</p><p>z+w

x+y

3</p><p>

]

\begin{gathered} \sf : \implies\begin{bmatrix} < /p > < p > \sf 3x & \sf3 y\\ < /p > < p > \sf 3z & \sf3 w < /p > < p > \end{bmatrix} = \begin{bmatrix} < /p > < p > \sf x + 4 & \sf 6 + x + y\\ < /p > < p > \sf - 1 + z + w & \sf 2w + 3 < /p > < p > \end{bmatrix}\end{gathered}

:⟹[

</p><p>3x

</p><p>3z

3y

3w</p><p>

]=[

</p><p>x+4

</p><p>−1+z+w

6+x+y

2w+3</p><p>

]

Comparing the corresponding elements of these two matrices we get :-

\sf 3x = x + 43x=x+4

\sf : \implies 2x = 4:⟹2x=4

\bf : \implies x = 2:⟹x=2

\sf 3y = 6 + x + y3y=6+x+y

\sf : \implies 2y = 6 + 2:⟹2y=6+2

\sf : \implies 2y = 8:⟹2y=8

\bf : \implies y = 4:⟹y=4

\sf 3w = 2w + 33w=2w+3

\bf : \implies w = 3:⟹w=3

\sf 3z = - 1 + z + w3z=−1+z+w

\sf : \implies 2z = - 1 + 3:⟹2z=−1+3

\sf : \implies 2z = 2:⟹2z=2

\bf : \implies z = 1:⟹z=1

x = 2

y = 4

z = 1

w = 3

PLEASE MARK BRANLIEST AND LIKE ANSWER

Similar questions