Math, asked by rectanglepower, 2 days ago

@ Moderators
@ Brainly Stars
@ Best Users

The error in the measurement of diameter of a circular disk is 1%. What is the percentage error in the measurement of its area?

✔ Quality Answer Needed

❎ No Spam

⚡ Spam Will Be Reported on the Spot. ​

Answers

Answered by mathdude500
38

\large\underline{\sf{Solution-}}

Let assume that diameter of circular disc be d units.

It is given that, error in the measurement of diameter of a circular disk is 1%.

It means

\rm\implies \:\dfrac{\triangle d}{d} \times 100 \:  =  \: 1\% \\

Now, we know area (A) of circle of diameter d is

\rm \: A \:  =  \: \dfrac{\pi}{4} {d}^{2}  \\

Taking log on both sides, we get

\rm \: logA \:  =  \: log\bigg(\dfrac{\pi}{4} {d}^{2}\bigg)  \\

\rm \: logA = log\pi - log4 + log {d}^{2}  \\

\rm \: logA = log\pi - log4 + 2logd  \\

On differentiating both sides, we get

\rm \: \dfrac{\triangle A}{A}  = 2\dfrac{\triangle d}{d}  \\

can be further rewritten as

\rm \: \dfrac{\triangle A}{A} \times 100  = 2\dfrac{\triangle d}{d}  \times 100 \\

\rm \: \dfrac{\triangle A}{A} \times 100  = 2 \times 1\% \\

\rm\implies \:\rm \: \dfrac{\triangle A}{A} \times 100  = 2\% \\

Hence, percentage error in the measurement of its area is 2 %

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:logxy = logx + logy \: }} \\

\boxed{ \rm{ \:log \frac{x}{y}  = logx  -  logy \: }} \\

\boxed{ \rm{ \:log {x}^{y} = y \: logx \: }} \\

\boxed{ \rm{ \:\dfrac{d}{dx}logx =  \frac{1}{x}  \: }} \\

\boxed{ \rm{ \:\dfrac{d}{dx}k =  0  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ log_{x}(x)  = 1}\\ \\ \bigstar \: \bf{ log_{x}( {x}^{y} )  = y}\\ \\ \bigstar \: \bf{ log_{ {x}^{z} }( {x}^{w} )  = \dfrac{w}{z} }\\ \\ \bigstar \: \bf{ log_{a}(b)  = \dfrac{logb}{loga} }\\ \\ \bigstar \: \bf{ {e}^{logx}  = x}\\ \\ \bigstar \: \bf{ {e}^{ylogx}  =  {x}^{y}}\\ \\ \bigstar \: \bf{log1 = 0}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by velpulaaneesh123
21

Answer:

2%

Step-by-step explanation:

Given:-

The error in the measurement:-

Diameter of a circular disk = 1%

Then,

Radius of a circular disk = 1/2

To Find:-

What is the percentage error in the measurement of its area?

Solution:-

We know,

\Longrightarrow\boxed{\bold{Area_{(circular\:disk)} = \pi r^2}}

Percentage error in the measurement:

\Longrightarrow \huge{\frac{\triangle A}{A} }\times 100

\Longrightarrow 2 \times \frac{\triangle r}{r}\times100

\Longrightarrow 2 \times 1\%

\Longrightarrow 2 \%

Similar questions