Physics, asked by chanchalgaur9, 8 months ago

At what angle do the two forces (P+Q) and (P-Q) act so that resultant is root 3P​

Answers

Answered by allysia
0

Answer:

The angle must be of,

cos^{-1} (\frac{1}{2} (1- \frac{Q^{2} }{(P+Q)(P-Q)}))\\\\\\

Explanation:

Let the angle between them be "a",

Now using the parallelogram addition law,

We'll end up here writing the net force (resultant) as,

\sqrt{(P+Q)^{2} + (P-Q)^{2} + 2(P+Q)(P-Q)cos(a) }

Which according to question is equal to,

\sqrt{3}P

So the equation we'll have is,

\sqrt{(P+Q)^{2} + (P-Q)^{2} + 2(P+Q)(P-Q)cos(a) }= \sqrt{3P}

Squaring both sides gives,

{(P+Q)^{2} + (P-Q)^{2} + 2(P+Q)(P-Q)cos(a) }={3P^{2} }\\

Solving it further,

\sqrt{(P+Q)^{2} + (P-Q)^{2} + 2(P+Q)(P-Q)cos(a) }= \sqrt{3P}\\\\P^{2} +2PQ+Q^{2} +P^{2} -2PQ+Q^{2}  +2cosa(P-Q)(P+Q)= 3P^{2} \\\\ 2Q^{2}  + 2(P+Q)(P-Q)cos a = P^{2} \\\\Q^{2} +2(P+Q)(P-Q)cos a = P^{2}-Q^{2}\\\\Q^{2}+2(P+Q)(P-Q)cos a= (P+Q)(P-Q)

Dividing both sides by,

(P+Q)(P-Q)

\frac{Q^{2} }{(P+Q)(P-Q)} +2cos a =1\\

exchanging sides gives,

2cos a =1- \frac{Q^{2} }{(P+Q)(P-Q)} \\\\cos a= \frac{1}{2} (1- \frac{Q^{2} }{(P+Q)(P-Q)})\\\\a= cos^{-1} (\frac{1}{2} (1- \frac{Q^{2} }{(P+Q)(P-Q)}))\\\\\\

Hence the angle.

Answered by zahaansajid
0

Gud Morning

How r u??❤️

┏_________∞◆∞_________┓  

✭✮ӇЄƦЄ ƖƧ ƳƠƲƦ ƛƝƧƜЄƦ✮✭  

┗_________∞◆∞_________┛  

We know that,

Resultant = √(A²+B²+2ABcosФ)   where, A and B are the 2 vectors

                                                                       Ф is tha angle between A and B

In the given case,

A =P+Q

B = P-Q

Resultant = 3P

Ф = ?

Hence,

3P = √ [ (P+Q)² + (P-Q)² + 2(P+Q)(P-Q)cosФ ]  

Squaring both sides

(3P)² = (P+Q)² + (P-Q)² + 2(P+Q)(P-Q)cosФ

Using the algebraic identities,

9P² = P² + Q² + 2PQ + P² + Q² - 2PQ + 2(P²-Q²)cosФ

2PQ and -2PQ gets cancelled to 0,

9P² = 2P² + 2Q² + 2(P²-Q²)cosФ

2(P²-Q²)cosФ = 7P² - 2Q²

cosФ = (7P² - 2Q²) / 2(P² - Q²)

Ф = cos^{-1}[\frac{7P^{2}-2Q^{2}  }{2(P^{2} - Q^{2}  )} ]

┏_________∞◆∞_________┓  

✭Hòpè Ìt Hèĺp§✭

Fòĺĺòw @zahaansajid  

Pls mark as brainliest  

✭Follow me and I'll follow you back ✭

┗_________∞◆∞_________┛

Similar questions