Math, asked by smriiteeeE, 11 months ago

At what distance should an object be placed from a convex lens of focal length 18 cm to obtain an image at 36 cm from it? What will be the magnification produced in this case?

Answers

Answered by Anonymous
26

Question :

At what distance should an object be placed from a convex lens of focal length 18 cm to obtain an image at 36 cm from it? What will be the magnification produced in this case?

Answer:

  • The object shoulkd be placed at a distance of 36 cm from the mirror.
  • The magnification of the image will be 1.

Given:

Focal length(f) = 18 cm.

The distance of the image(v) = 36 cm.

To find:

  • The distance of the object.
  • The magnificent of the image.

Explanation:

Let, the distance of the object be 'u' from the mirror.

We know that,

\frac{1}{f} = (\frac{1}{u} + \frac{1}{v})

\frac{1}{18} = (\frac{1}{u} + \frac{1}{36} )\\

(\frac{1}{18} - \frac{1}{36} ) = \frac{1}{u}

\frac{1}{u}= (\frac{1}{18} - \frac{1}{36})

\frac{1}{u} = (\frac{2-1}{36} ) [∵ The L.C.M. of the denominators is 36.]

\frac{1}{u}= \frac{1}{36}

⇒ u = 36 cm.

∴ The distance of the object from the mirror is 36 cm.

Let, the magnificent of the image be, 'm'

We know that,

m = (\frac{v}{u} )

   = \frac{36}{36}

   = 1

∴ The magnificent of the image is 1.

Since, magnificent has no unit as it is a ratio.

Answered by Anonymous
319

 \:  \red{\boxed{\bf{Solution. }}}

    \rm{Given, \: focal \: lenth \: of \: lens,}

    \sf \red{f = 18 \: cm }

  \rm{Distance \: of \: image,}

   \sf \red{v = ± 36 \: cm}

 \sf{ [∵ ± sign \: as \: an \: image \: can  \: be \: on \: either  \: side} \\  \sf{of \: lens.]}

  \rm{Distance \: of \: object,}

   \sf \blue{u = ?}

    \rm{Magnification \: produced,}

  \sf \red{m =  ?}

  \rm{From \: lens \: formula,}

  \sf{ \frac{1}{v} -  \frac{1}{u} =  \frac{1}{f}}

  \implies \sf  \frac{1}{u} =  \frac{1}{v} -  \frac{1}{f}

  \sf \:  =  \frac{1}{±36} -  \frac{1}{18} =  \frac{1}{36} -  \frac{1}{18} \sf \frac{1}{ - 36} -  \frac{1}{18}

   \sf =  \frac{1 - 2}{36}\ and \frac{ - 1 - 2}{36} =  \frac{ - 1}{36} \: and \frac{ - 3}{36}

 \sf{ ∴ u =  - 36 \: cm \: and \:  - 12 \: cm}

   \rm \: If \: \:  \:  \:  \:  \:  \:   \ \:  \: \: \:   \sf{u =  - 36 \: cm \: and \: v = 36 \: cm}

   \rm Then, \:  \:  \:  \:   \:  \:  \:  \: \:  \:  \sf \red{m =  \frac{v}{u} }

 \sf \frac{36}{ - 36} =  \bf \red{ - 1}

  \bf \pink{Image \: is \: real \: and \: inverted.}

   \rm \: If \: u \:  =   \sf \red{- 12 \: cm} \: and \: v =  \sf \red{ - 36 \: cm}

   \rm  Then, \:  \: \:   \:  \:  \:  \: \:  \:  \:  \:   \:  \:  \:   \sf \: m =  \frac {v}{u}

 \rm   =  \frac{ - 36}{ - 12}

    \sf \ = \red{3 }

 \rm Image \:is \: virtual \: and \: erect.

Similar questions
Math, 5 months ago