Math, asked by harshrai378, 2 months ago

at what rate of compound interest compounded annually, will rupees 7500 become 9075 in 2 years? ​

Answers

Answered by Anonymous
189

QuestioN

  • At what rate of compound interest compounded annually, will ₹ 7500 become ₹ 9075 in 2 years?

\:

{\large{\frak{\pmb{\underline{From\:the\:above\:data }}}}}

Amount after n years when the interest is compounded annually is given by

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Large{\ddagger}\small{\underline{\boxed{\mathcal{\pmb{\underline{\red{ A\:=\: P\bigg(1+\bf\dfrac{R}{100}\bigg)^n}}}}}}}

\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\curlyeqsucc\:Principal\:(P)=\: ₹\:7500

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\curlyeqsucc\:Amount\:(A)=\: ₹\:9075

\sf \:\:\:\:\:\:\:\:\curlyeqsucc\: Time\:(n\:years)=\: 2\:years

\:\:\:\:\:\:\:\:\:\:\:\:\:──────────────────

{\large{\mathcal{\pmb{\underline{Now, }}}}}

\:\:\:\:\:{\bold\bullet \:\:{ \underline{\small{ Let \:the\: required\:rate\:be\:R\%\:per\:annum.}}}}

\:\:

\sf \:\:\: \therefore\:\:\:\:\:\:\:\:\: ₹ 9075\:=\: ₹ 7500\bigg(1+\bf\dfrac{R}{100}\bigg)^2

\:

\:

\sf \:\:\:\:\:\:\: \implies\: \bf\dfrac{9075}{7500}\:=\:\bigg(1+\bf\dfrac{R}{100}\bigg)^2

\:

\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\: \twoheadrightarrow \;\bf\dfrac{121}{100}\:=\:\bigg(1+\bf\dfrac{R}{100}\bigg)^2

\:

\:

\sf \:\:\:\:\:\:\:\:\:\: \twoheadrightarrow \:\bigg( \bf\dfrac{11}{10}\bigg)\cancel{^2}\:=\:\bigg(1+\bf\dfrac{R}{100}\bigg)\cancel{^2}

\:

\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\: \twoheadrightarrow \:\bf\dfrac{11}{10}\:=\:1+\bf\dfrac{R}{100}

\:

\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\twoheadrightarrow \:\bf\dfrac{11}{10}\:-1=\:\bf\dfrac{R}{100}

\:

\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\: \twoheadrightarrow \:\bf\dfrac{1}{10}\:-1=\:\bf\dfrac{R}{100}

\:

\:

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \twoheadrightarrow \:R\:=\: \bf\dfrac{100}{10}\:=\:\purple{10}

\:\:

\underline{\boxed{\sf{Hence,\:the\: required\:rate\:is\:\frak{\pink{10\%\:per\:annum.}}}}}

Answered by Anonymous
24

\begin{gathered}{\Large{\textsf{\textbf{\underline{Question\:Given:}}}}}\end{gathered}

{ }

  • At what rate of compound interest compounded annually, will Rs 7500 become 9075 in 2 years?

{ }

\begin{gathered}{\Large{\textsf{\textbf{\underline{Required\:Solution:}}}}}\end{gathered}

{ }

\:\:\:\:\:\bigstar\large\:\tt{Value\:Given\:To\:Us\::}

  • \sf{Principal\:(P)\:\leadsto\:Rs.\:7500}
  • \sf{Amount\:(A)\:\leadsto\:Rs.\:9075}
  • \sf{Time\:(n)\:\leadsto\:2\:year}

{ }

\:\:\:\:\:\bigstar\large\:\tt{Formula\:Used\:Here\::}

  • \pink{\frak{Amount\:=\:P\:\bigg(\:1\:+\:{\dfrac{R}{100}}\:\bigg)^{n}}}

{ }

\:\:\:\:\:\bigstar\large\:\tt{Putting\:Value\:in\:Formula\::}

  • Let the required rate be R% per annum.

{ }

\:\:\:\:\:\:\:\:{\odot}\:\sf{Rs.\:9075\:=\:Rs.\:7500\:\bigg(\:1\:+\:{\dfrac{R}{100}}\:\bigg)^{2}}

{ }

\:\:\:\:\:\:\:\:\:\:\dashrightarrow\:\sf{\dfrac{9075}{7500}}\:=\:\bigg(\:1\:+\:{\dfrac{R}{100}}\:\bigg)^{2}

{ }

\:\:\:\:\:\:\:\:\:\:\dashrightarrow\:\sf{\dfrac{121}{100}}\:=\:\bigg(\:1\:+\:{\dfrac{R}{100}}\:\bigg)^{2}

{ }

\:\:\:\:\:\:\:\:\:\:\dashrightarrow\:\sf{\bigg(\:{\dfrac{11}{10}}\:\bigg)^{\cancel{2}}\:=\:\bigg(\:1\:+\:{\dfrac{R}{100}}\:\bigg)^{\cancel{2}}}

{ }

\:\:\:\:\:\:\:\:\:\:\dashrightarrow\:\sf{\dfrac{11}{10}}\:-\:1\:=\:{\dfrac{R}{100}}

{ }

\:\:\:\:\:\:\:\:\:\:\dashrightarrow\:\sf{\dfrac{1}{10}}\:-\:1\:=\:{\dfrac{R}{100}}

{ }

\:\:\:\:\:\:\:\:\:\:\dashrightarrow\:\sf{R\:=\:\cancel{\dfrac{100}{10}}}

{ }

\:\:\:\:\:\:\:\:\:\:\dashrightarrow\:\sf\:{\underline{\boxed{\frak{\pink{10\:\%}}}}}\:\bigstar

{ }

{ }

\:\:\:\:\:\:\therefore\:{\underline{\sf{Hence,\:the\:rate\:is\:{\textsf{\textbf{10\:\% }}}}}}.

{ }

\:\:\:\:\:\:\:\:━━━━━━━━━━━━━━━━━━━

{\red{\underline{\underline{\textsf{\textbf{\red{@ItzRisingStaR}}}}}}}

Similar questions