Math, asked by simran1140, 10 months ago


At what rate per cent compound interest, 800 amounts to 926.10 in 1 ,1/2 years, interest being
compounded half yearly?​

Answers

Answered by Anonymous
38

\bf \red{ \underline{ \underline{given}}}

  • principal, P= Rs 800
  • Amount, A = Rs 926.10
  • Time, n = 1 ½ = 3 half years
  • Rate =r °/ p.a = r/2 per half year

\bf \red{ \underline{ \underline{to \: find \: out}}}

Rate of interest =?

\bf \red{ \underline{ \underline{formula \: used}}}

 \orange{A = p(1 +  \frac{r}{100} ) {}^{n} }

\bf \red{ \underline{ \underline{solution}}}

 A = p(1 +  \frac{r}{100} ) {}^{n}

 \star \: putting \: the \: value

 =  > 926.10 = 800(1 +  \frac{r}{200} ) {}^{3}

 =  >  \frac{926.10}{800}  = (1 +  \frac{r}{200} ) {}^{3}

 =  >   \frac{9261}{8000}  = (1 +  \frac{r}{200} ) {}^{3}

 =  > ( \frac{21}{20} ) {}^{3 }  = (1 +  \frac{r}{200} ) {}^{3}

 =  >  \frac{21}{20}  = 1 +  \frac{r}{200}

 =  >  \frac{r}{200}  =  \frac{21}{20}  - 1

 =  >  \frac{r}{200}  =  \frac{1}{20}

 =  > r =  \frac{200}{20}

 =  > \purple {r = 10}

 \therefore \:  \: required \: rate \: of \: interest \:  is\: 10\%p.a

Answered by Anonymous
39

Question:

At what rate per cent compound interest, 800 amounts to 926.10 in 1 ,1/2 years, interest being compounded half yearly?

Answer:

  • The required interest rate is 10%.

Given:

  • Principle = Rs. 800
  • Amount = Rs.926.10
  • Time period 1 and \mathsf {\frac{1}{2}} = 3 half yearly

To Find:

  • Rate of Interest = ?

Explanation:

\underline\mathsf \red{Formula\:used\:here\: :-}

  • \mathsf {A = P( 1 + \frac{R}{100})^n}

Let 'R' be the rate of interest.

\underline\mathsf\red {Now\: :-}

\mathsf {A = P( 1 + \frac{R}{100})^n}

:\implies \mathsf {926.10 = 800(1 + \frac{R}{200})^3}

:\implies \mathsf {\frac{926.10}{800} = (1 + \frac{R}{200})^3}

:\implies \mathsf {\frac{9261}{8000} = (1 + \frac{R}{200})^3}

:\implies \mathsf {(\frac{21}{20})^3 = (1 + \frac{R}{200})^3 }

:\implies \mathsf {\frac{21}{20} = 1+ \frac{R}{200}}

:\implies \mathsf {\frac{R}{200} = \frac{21}{20} - 1}

:\implies \mathsf {\frac{R}{200} = \frac{1}{20}}

:\implies \mathsf {R = \frac{200}{20} }

\therefore \mathsf {R = 10\%}

  • Hence, the required interest rate is 10%.
Similar questions