Math, asked by Lookatmydab12, 7 months ago

At what rate per cent per annum will₹3000amount to ₹3993in 3years, interest being compounded annually?

Answers

Answered by TheProphet
2

S O L U T I O N :

\underline{\bf{Given\::}}

  • Principal,(P) = Rs.3000
  • Amount, (A) = Rs.3993
  • Time, (n) = 3 years

\underline{\bf{Explanation\::}}

As we know that formula of the compounded annually;

\boxed{\bf{Amount = Principal\bigg(1+\frac{R}{100} \bigg)^{n}}}

A/q

\mapsto\tt{A = P\bigg(1+\dfrac{R}{100} \bigg)^{n}}

\mapsto\tt{3993 = 3000\bigg(1+\dfrac{R}{100} \bigg)^{3}}

\mapsto\tt{\dfrac{3993}{3000} =\bigg(1+\dfrac{R}{100} \bigg)^{3}}

\mapsto\tt{\cancel{\dfrac{3993}{3000}} =\bigg(1+\dfrac{R}{100} \bigg)^{3}}

\mapsto\tt{\dfrac{1331}{1000} =\bigg(1+\dfrac{R}{100} \bigg)^{3}}

\mapsto\tt{3\sqrt{\dfrac{1331}{1000} }  =1+\dfrac{R}{100} }

\mapsto\tt{\dfrac{11}{10}  =1+\dfrac{R}{100} }

\mapsto\tt{\dfrac{11}{10} -1 = \dfrac{R}{100} }

\mapsto\tt{\dfrac{11-10}{10} = \dfrac{R}{100} }

\mapsto\tt{\dfrac{1}{10} = \dfrac{R}{100} }

\mapsto\tt{10R = 100\:\:\underbrace{\sf{cross-multiplication}}}

\mapsto\tt{R = \cancel{100/10}}

\mapsto\bf{R = 10\:\%}

Thus,

The rate percent per annum will be 10% .

Similar questions