Math, asked by kumarrajeshjangra197, 5 months ago

At what rate per cent per annum will ₹ 4500 amount to ₹5715 in 3 years?

Answers

Answered by ayannaskar3640
2

ANSWER: 9 %

step by step explanation:

interest =  5715  - 4500 \\  = 1215rs  \\ 1215 =  \frac{4500 \times 3 \times r}{100 }  \\  \\  =  >  \frac{1215}{45 \times 3 }  = r \\  \\ r = 9\%

Answered by TRISHNADEVI
4

ANSWER :

 \\  \\

  • [i] When interest is calculated in Simple Interest, Rs. 4500 will be Rs. 5715 in 3 years at the rate of interest 9% p.a.

  • [ii] When interest is calculated in Compound Interest, Rs. 4500 will be Rs. 5715 in 3 years at the rate of interest 8.2% p.a.

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }

SOLUTION :

 \\  \\

Given :-

  • Principal, P = Rs. 4500

  • No. of time, n = 3 years

  • Amount, A = Rs. 5715

 \\

To Find :-

  • Rate of Interest, r = ?

 \\

Note :-

 \\

Interest can be calculated in two ways :

  • ➭ Simple Interest

  • ➭ Compound Interest

 \\

Required formulas :-

 \\

 \:  \:  \:  \:  \:  \bigstar \:  \:  \boxed{ \bf{Interest = Amount - Principle }}

 \:  \:  \:  \:  \:  \bigstar \:  \:  \boxed{ \bf{S.I =  \dfrac{P \times r \times n}{100}}}

 \:  \:  \:  \:  \:  \bigstar \:  \:  \boxed{ \bf{C.I. = A - P}} \\  \\  \:  \:  \:  \:  \mapsto \:  \:  \boxed{ \sf{A = P \: (1 +  \dfrac{r}{100} ) {}^{n} }}

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

Calculation of Rate of Interest when interest is calculated in Simple Interest :-

 \\

We have,

  • A = Rs. 5715

  • P = Rs. 4500

 \\

 \sf{ \therefore \:  \:  S.I. = A - P} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ = Rs.  \: (5715 - 4500) } \\  \\ \:  \:   \sf{= Rs. \:  1215}

Now,

 \:  \:  \bigstar \:  \:  \sf{\underline{S.I = \dfrac{ P \times r  \times n}{100}}} \\  \\  \sf{ \implies \: 1215 =  \frac{45 \cancel{0} \cancel{0} \times r \times 3}{1 \cancel{0} \cancel{0}} } \\  \\  \sf{ \implies \: 1215 =  45 \times r \times 3} \:  \:  \:  \:  \:  \\  \\  \sf{ \implies \: 1215 = 135 \: r}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \sf{ \implies \: r =  \dfrac{1215}{135}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \\   \sf{ \large{ \therefore \:   \underline{ \: r= 9 \: }}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

  • Hence, the rate of interest,r = 9%

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

Calculation of Rate of Interest when interest is calculated in Compound Interest :-

 \\

We have,

  • P = Rs. 4500

  • A = Rs. 5715

  • n = 3 years

 \\

 \bigstar \:  \:  \sf{\underline{A = P \: (1 +  \dfrac{r}{100}) {}^{n}}} \\  \\  \sf{ \implies \: 5715 = 4500(1 +  \frac{r}{100}) {}^{3} } \\  \\ \sf{ \implies \:  \frac{5715}{4500}  = (1 +  \frac{r}{100} ) {}^{3}} \:  \:  \:  \:  \:  \:   \\  \\ \sf{ \implies \: 1.27 = (1 +  \frac{r}{100} ) {}^{3}}  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\\sf{ \implies \:  1 +  \frac{r}{100}  =  \ \sqrt[3]{1.27}}  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf{ \implies \: 1  +  \frac{r}{100}  = 1.082} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf{ \implies \: \frac{r}{100}  = 1.082 - 1}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \sf{ \implies \: \frac{r}{100}  = 0.082} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf{ \implies \: r =  0.082 \times 100}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \sf{ \large{ \therefore \: \underline{ \: r = 8.2 \: }}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

  • Hence, the rate of interest, r = 8.2%
Similar questions