Math, asked by saivardhan5888, 10 months ago

integration of 1+v/1-2v-v^2​

Answers

Answered by Anonymous
0

Answer:

in integration the units of the physical quantities get changers

hope it helps u and please mark as brainliest

Answered by Delta13
1

Let

I \:  = \displaystyle\int\limits \frac{1 + v}{1 - 2v -  {v}^{2} } dv \\  \\  = \displaystyle\int\limits \frac{1 + v}{2 - 1 - 2v -  {v}^{2} } dv \\  \\  = \displaystyle\int\limits \frac{ 1+ v}{2 - (v + 1) {}^{2} } dv \\  \\  = \displaystyle\int\limits \frac{2(1 + v)}{2( \sqrt{2} - v - 1)( \sqrt{2}  + v + 1) } dv \\  \\  = \displaystyle\int\limits \frac{1}{2( \sqrt{2} - v - 1) } dv - \displaystyle\int\limits \frac{1}{2( \sqrt{2}  + v + 1)} dv \\  \\  =  -  \frac{\texttt{ In}( \sqrt{2}  - v - 1)}{2}  -   \frac{\texttt{ In}( \sqrt{2}  + v + 1) }{2}  \\  \\  =  -  \frac{\texttt{ In}  (2 - (v + 1) {}^{2} ) }{2}  + C

(C is integral constant )

____________________________

Let,

 1 - 2v -  {v}^{2}  = z \\  \\  \implies (- 2 - 2v)dv = dz \\ or \\  \implies \:  - 2(1 + v)dv = dz \\  \\ \implies \displaystyle\int\limits \:     \left(- \frac  {1}{2} \right) \frac{dz}{z}  =  -  \frac{1}{2}  \texttt{In}|z|   + C \\  \\  \implies \:  \left( -  \frac{1}{2}  \right) \texttt{In} \: |1 - 2v -  {v}^{2}|  + C

(C is integral constant)

Similar questions