Math, asked by Nandinigiri, 11 months ago

At what rate percent per a nnumn will rs 9000 amount to rs 10240 in 2 years , compounded annually

Answers

Answered by DSaiKiran
0

Answer:

The answer is 3.59 percent of rate

A = P(1+r/n)^nt

10240= 900(1+r/2)^2×2

which gives r=(166.1)^1/4

r= 3.59 %

Answered by harsh05572
22

\mathbb{ANSWER}

\rule{300}{1}

Given Principle P=9000Amount(A)=10240Time(n)=2years

\rule{300}{1}

Now,

Amount=(A)=P{\left(1+\dfrac{r}{100}^{n}\right)}

\rightarrow10240=9000{\left(1+\dfrac{r}{100}^{2}\right)}

\rightarrow{\left(1+\dfrac{r}{100}^{2}\right)}=\dfrac{10240}{9000}

\rightarrow{\left(1+\dfrac{r}{100}^{2}\right)}={\left(\dfrac{32}{30}^{2}\right)}

\rightarrow1+\dfrac{r}{100}=\dfrac{32}{30}-1

\rightarrow\dfrac{r}{100}=\dfrac{32}{30}-1

\rightarrow\dfrac{r}{100}=\dfrac{2}{30}

\rightarrowr=\dfrac{{2}\times{100}}{30}=

\rightarrow\dfrac{20}{3}

\rule{300}{1}

Hence, required rate of interest is \dfrac{20}{3}

\rule{300}{1}

Similar questions