Math, asked by ratheeanju80, 10 months ago

at what rate percent per annum compound interest will rupees 6250 amount to rupees 7290 in 2 years​

Answers

Answered by dwivediraviprakash78
10

Answer:

The answer will be 8%

Step-by-step explanation:

Amount=P(+Rate/100)square

Amount=7290

Principal=6250

Rate=?

Time=2years

7290=6250(1+R/100)square

7290/6250=(1+R/100)square

1.08= 1+R/100

R/100=1.08-1

R/100=0.08

R=0.08×100

R=8%

Answer

Answered by Anonymous
62

⠀⠀⠀⠀⠀{ \huge {\rm{ \underline{ \pink{QUESTION}}}}}</p><p>

At what rate percent per annum compound interest will rupees 6250 amount to rupees 7290 in 2 years

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀\huge{ \underline{ \blue{ \bold{ \underline{ \bf{AnSweR }}}}}}

  \large\underline{ \underline{ \purple{ \bold {Given}}}}

⠀⠀⠀⠀⠀ Amount = 7290

⠀⠀⠀⠀⠀➩ Principal = 6250

⠀⠀⠀⠀⠀➩ Time = 2 years

━━━━━━━━━━━━━━━━━━━

  \large\underline{ \underline{ \purple{ \bold {To \:Find}}}} =  &gt;

we have to find the rate

━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀☆\huge\underline{ \underline{ \red{ \bold{solution}}}}

⠀⠀⠀➩  \bf \green{Amount = p(1 +  \frac{rate}{100} ) {}^{time} }\\\\

 \implies\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf7290 = 6250(1 +  \frac{R}{100}  ){}^{2}  \\  \\\implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf  \frac{7290}{6250}  = (1 +  \frac{R}{100} ) {}^{2}  \\

\implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \: 1 +  \frac{R}{100}  =  \sqrt{ \frac{729}{625} }  \\  \\\implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \: \frac{100 + R}{100}  =  +  -  \frac{27}{25}  \\  \\ \implies\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \:100 + R=  \frac{27}{25}  \times 100 \\  \\ \implies\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \:R= 108 - 100 \\  \\ \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \bf \: \large{\underline{ \boxed{  \pink{\:R= 8\%}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions