Math, asked by dineshmeena726374, 11 months ago

@12. An isosceles right-angled triangle has an area 8 cm2. The value of perimeter of triangle is ..... cm.​

Answers

Answered by Anonymous
45

Answer :-

13.656 cm

Solution :-

Let the equal sides of the isosceles right triangle be 'a'cm

Area of isosceles right triangle = 8 cm²

==> 1/2 * a² = 8

==> a² = 8 * 2

==> a² = 16

==> a = √16

==> a = 4

Therefore the equal sides are of length 4 cm.

Let the hypotenuse of the isosceles right triangle be h

By pythagoars theorem

==> h² = a² + a²

==> h² = 2a²

==> h² = 2( 4 )²

==> h = 4√2

==> h = 4( 1.414 )

==> h = 5.656

Perimeter of the triangle = Sum of 3 sides

= a + a + h

= 2a + h

= 2( 4 ) + 5.656

= 8 + 5.656

= 13.656 cm

Hence the perimeter of the triangle is 13.656.

Answered by StarrySoul
56

Solution :

Let ABC be an isosceles right-angled triangle in which AB = BC

Given Area of Triangle = 8 cm^2

 \boxed{ \purple{ \sf \: Area  \: of  \: Triangle  =  \frac{1}{2}  \times base \times height}}

 \longrightarrow \sf  \dfrac{1}{2} \times  AB \times  BC = 8 {cm}^{2}

Since It's an Isosceles Triangle Two Sides are Equal.

 \longrightarrow \sf  \dfrac{1}{2} \times   {AB}^{2}  = 8 {cm}^{2}

 \longrightarrow \sf  {AB}^{2}  = 8 \times 2 {cm}^{2}

 \longrightarrow \sf  {AB}^{2}  =16 {cm}^{2}

 \longrightarrow \sf  {AB}  =   \sqrt{16}

 \longrightarrow \sf  {AB}  =   4 \: cm

We've got measurement of Base and Perpendicular,In order to find the Perimeter We've to Find the Hypotenuse First.

 \bf \underline{ \sf \: By \: Pythagoras \:  Theorem :  }

 \boxed{ \purple{ \sf \:  ({Hypotenuse})^{2}   =  ({Perpendicular})^{2} +  ( {Base })^{2} }}

 \longrightarrow \sf \:  {AC}^{2}  =  {AB}^{2}   +  {BC}^{2}

 \longrightarrow \sf \:  {AC}^{2}  =   {4}^{2}  +  {4}^{2}

 \longrightarrow \sf \:  {AC}^{2}  =   16 + 16

 \longrightarrow \sf \:  {AC}^{2}  =   32

 \longrightarrow \sf \:  {AC} =  \sqrt{32}

 \longrightarrow \sf \:  {AC} = 5.65 \: cm

Now,

 \boxed{ \purple{ \sf \:  Perimeter  \: of  \: Triangle \:  = Sum \:  of  \: all  \: Sides }}

 \longrightarrow \sf \: AB +  BC +  AC

 \longrightarrow \sf \:4 \: cm + 4 \: cm + 5.65 \: cm

 \longrightarrow \sf \:13.65 \: cm

Hence,Value of Perimeter of the Triangle is 13.65 cm. (Approx)

Attachments:
Similar questions