English, asked by vaidiksawant18, 1 month ago

@kingaditiyasharma
(x - 2) (x + 2)    + 1 = 2x - 3x + 8x

Answers

Answered by deepika4038
0

Answer:

(

2

)

(

+

2

)

+

1

=

2

3

+

8

{\color{#c92786}{(x-2)(x+2)}}+1=2x-3x+8x

(x−2)(x+2)+1=2x−3x+8x

(

+

2

)

2

(

+

2

)

+

1

=

2

3

+

8

{\color{#c92786}{x(x+2)-2(x+2)}}+1=2x-3x+8x

x(x+2)−2(x+2)+1=2x−3x+8x

2

Distribute

(

+

2

)

2

(

+

2

)

+

1

=

2

3

+

8

{\color{#c92786}{x(x+2)}}-2(x+2)+1=2x-3x+8x

x(x+2)−2(x+2)+1=2x−3x+8x

2

+

2

2

(

+

2

)

+

1

=

2

3

+

8

{\color{#c92786}{x^{2}+2x}}-2(x+2)+1=2x-3x+8x

x2+2x−2(x+2)+1=2x−3x+8x

3

Distribute

2

+

2

2

(

+

2

)

+

1

=

2

3

+

8

x^{2}+2x{\color{#c92786}{-2(x+2)}}+1=2x-3x+8x

x2+2x−2(x+2)+1=2x−3x+8x

2

+

2

2

4

+

1

=

2

3

+

8

x^{2}+2x{\color{#c92786}{-2x-4}}+1=2x-3x+8x

x2+2x−2x−4+1=2x−3x+8x

4

Combine like terms

2

+

2

2

4

+

1

=

2

3

+

8

x^{2}+{\color{#c92786}{2x}}{\color{#c92786}{-2x}}-4+1=2x-3x+8x

x2+2x−2x−4+1=2x−3x+8x

2

4

+

1

=

2

3

+

8

x^{2}{\color{#c92786}{-4}}+1=2x-3x+8x

x2−4+1=2x−3x+8x

5

Add the numbers

2

4

+

1

=

2

3

+

8

x^{2}{\color{#c92786}{-4}}+{\color{#c92786}{1}}=2x-3x+8x

x2−4+1=2x−3x+8x

2

3

=

2

3

+

8

x^{2}{\color{#c92786}{-3}}=2x-3x+8x

x2−3=2x−3x+8x

6

Combine like terms

2

3

=

2

3

+

8

x^{2}-3={\color{#c92786}{2x}}{\color{#c92786}{-3x}}+{\color{#c92786}{8x}}

x2−3=2x−3x+8x

2

3

=

7

x^{2}-3={\color{#c92786}{7x}}

x2−3=7x

7

Move terms to the left side

2

3

=

7

x^{2}-3=7x

x2−3=7x

2

3

7

=

0

x^{2}-3-7x=0

x2−3−7x=0

8

Rearrange terms

2

3

7

=

0

x^{2}-3-7x=0

x2−3−7x=0

2

7

3

=

0

x^{2}-7x-3=0

x2−7x−3=0

9

Use the quadratic formula

=

±

2

4

2

x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}

x=2a−b±b2−4ac

Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.

2

7

3

=

0

x^{2}-7x-3=0

x2−7x−3=0

=

1

a={\color{#c92786}{1}}

a=1

=

7

b={\color{#e8710a}{-7}}

b=−7

=

3

c={\color{#129eaf}{-3}}

c=−3

=

(

7

)

±

(

7

)

2

4

1

(

3

)

2

1

x=\frac{-({\color{#e8710a}{-7}}) \pm \sqrt{({\color{#e8710a}{-7}})^{2}-4 \cdot {\color{#c92786}{1}}({\color{#129eaf}{-3}})}}{2 \cdot {\color{#c92786}{1}}}

x=2⋅1−(−7)±(−7)2−4⋅1(−3)

10

Simplify

Evaluate the exponent

Multiply the numbers

Add the numbers

Multiply the numbers

=

7

±

6

1

2

x=\frac{7 \pm \sqrt{61}}{2}

x=27±61

11

Separate the equations

To solve for the unknown variable, separate into two equations: one with a plus and the other with a minus.

=

7

+

6

1

2

x=\frac{7+\sqrt{61}}{2}

x=27+61

=

7

6

1

2

x=\frac{7-\sqrt{61}}{2}

x=27−61

12

Solve

Rearrange and isolate the variable to find each solution

=

7

+

6

1

2

x=\frac{7+\sqrt{61}}{2}

x=27+61

=

7

6

1

2

x=\frac{7-\sqrt{61}}{2}

x=27−61

Show less

Solution

=

7

±

6

1

2

Similar questions