Math, asked by logamumarani, 9 months ago

auto speed from 20m/s to 50m/s with acceleration of 10m/s calculate the distance travelled and time taken?​

Answers

Answered by Anonymous
98

 \red{\underline{{ \bf Correct \: Question }}}

  • An auto speeds from 20m/s to 50m/s with acceleration of 10m/s². Calculate the distance travelled and time taken?

 \red{\underline{{ \bf Solution  }}}

 \underline {\underline{{\purple{ \sf Given }}}}

  • Initial Velocity (u) ➠ 20 m/s
  • Final Velocity (v) ➠ 50 m/s
  • Acceleration (a) ➠ 10 m/s²

 \underline {\underline{{ \purple{\sf To \: Find }}}}

  • Time Taken (t)
  • Distance Travelled (s)

 \underline {\underline{{ \green{\sf Calculating \: Time \: Taken }}}}

Formula Used :-  \underline{\underline{\boxed{   \gray{\sf v = u +at }}}}

Substituting Values

☞ 50 = 20 + 10 × t

☞ 50 - 20 = 10 t

☞ 30 = 10 t

 \sf t = \cancel{\dfrac{30}{10}}

☞ t = 3

{\green{ \underbrace{\boxed{\underline{\underline{\purple{ \sf \therefore Time \: Taken \: is \: 3 \: sec}}}}}}}

Now,

 \underline {\underline{{ \green{\sf Calculating \: Distance \: Travelled }}}}

Method 1

Formula Used :-  \underline{\underline{\boxed{   \gray{\sf{v}^{2}  -  {u}^{2} = 2as }}}}

Substituting Values

☞ (50)² - (20)² = 2 × 10 × s

☞ 2500 - 400 = 20s

☞ 2100 = 20s

 \sf s = \dfrac{2100}{20}

☞ 105

Method 2

Formula Used :-  \underline{\underline{\boxed{   \gray{\sf s = ut + \dfrac{1}{2} at^{2} }}}}

Substituting Values

☞ s = 20 × 3 + ½ × 10 × 3²

☞ s = 60 + ½ × 10 × 9

☞ s = 60 + 5 × 9

☞ s = 60 + 45

☞ s = 105

{\pink{ \underbrace{\boxed{\underline{\underline{\orange{ \sf \therefore Distance \: Travelled \: is \:  105\: m}}}}}}}

 \huge \blue{{\tt Read \: More :-}}

  • https://brainly.in/question/20794001

  • https://brainly.in/question/20828891

  • https://brainly.in/question/21067380

  • https://brainly.in/question/21201674
Answered by Anonymous
63

Question :

An auto speeds from 20m/s to 50m/s with acceleration of 10m/s². Calculate the distance travelled and time taken?

To Find :

  • Time Taken

  • Distance Covered .

Given :

  • Final velocity = 50 m/s

  • Initial velocity = 20 m/s

  • Acceleration = 10 m/s

We Know :

First EQuation of Motion :

\blue{\sf{\underline{v = u + at}}}

Where,

  • v = Final velocity

  • u = Initial velocity

  • a = Acceleration due to gravity

  • t = Time Taken

Second Equation of Motion :

\blue{\sf{\underline{s = ut + \dfrac{1}{2}at^{2}}}}

where,

  • v = Final velocity
  • u = Initial velocity

  • a = Acceleration due to gravity

  • t = Time Taken

  • s = Distance Traveled

Third EQuation of Motion :

\blue{\sf{\underline{v^{2} = u^{2} + 2as}}}

  • v = Final velocity

  • u = Initial velocity

  • a = Acceleration due to gravity

  • s = Distance covered

Solution :

"Time Taken" :-

  • v = 50 m/s
  • u = 20 m/s
  • a = 10 m/s

Using the first Equation of Motion , and by substituting the values in it , we get :

\blue{\sf{v = u + at}} \\ \\ \\ \implies \sf{50 = 20 + 10 \times t} \\ \\ \\ \implies \sf{50 - 20 = 10 \times t} \\ \\ \\ \implies \sf{30 = 10 \times t} \\ \\ \\ \implies  \sf{\dfrac{30}{10} = t} \\ \\ \\ \implies \sf{\dfrac{3\not{0}}{1\not{0}} = t} \\ \\ \\ \implies \sf{3 s = t} \\ \\ \\ \therefore \purple{\sf{t = 3 s}}

Hence , the time taken is 3 seconds.

"Distance Covered" :-

  • v = 50 m/s
  • u = 20 m/s
  • a = 10 m/s²

Using the Third Equation of Motion , and substituting the values in it , we get :

\blue{\sf{v^{2} = u^{2} + 2as}} \\ \\ \\ \implies \sf{50^{2} = 20^{2} + 2 \times 10 \times s} \\ \\ \\ \implies \sf{50^{2} - 20^{2} = 20 \times s} \\ \\ \\ \implies \sf{2500 - 400 = 20 \times s} \\ \\ \\ \implies \sf{2100 = 20 \times s} \\ \\ \\ \implies \sf{\dfrac{2100}{20} = s} \\ \\ \\ \implies \sf{105 m = s} \\ \\ \\ \therefore \purple{\sf{s = 105 m}}

Hence , the Distance Traveled is 105 m.

Alternative Method :-

"Distance Covered" :

  • t = 3 s
  • u = 20 m/s
  • a = 10 m/s²

\blue{\sf{s = ut + \dfrac{1}{2}at^{2}}} \\ \\ \\ \implies \sf{s = 20 \times 3 + \dfrac{1}{2} \times 10 \times 3^{2}} \\ \\ \\ \implies \sf{s = 60 + \dfrac{1}{2} \times 10 \times 9} \\ \\ \\ \implies \sf{s = 60 + 5 \times 9} \\ \\ \\ \implies \sf{s = 60 + 45} \\ \\ \\ \implies \sf{s = 105 m} \\ \\ \\ \therefore \purple{\sf{s = 105 m}}

Hence , the Distance Covered is 105 m.

Similar questions