Awadh state was annexed on these grounds: (LMNMAIADNOIRSATTI)
Answers
Explanation:
Solution−
Given integral is
\rm \: \displaystyle \int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right)d x∫
0
1
cot
−1
(1−x+x
2
)dx
We know that
\begin{gathered}\boxed{\tt{ \: {cot}^{ - 1}x = {tan}^{ - 1} \frac{1}{x} \: }} \\ \end{gathered}
cot
−1
x=tan
−1
x
1
So, using this, we get
\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{1}{1 - x + {x}^{2} } \bigg] d x=∫
0
1
tan
−1
[
1−x+x
2
1
]dx
\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{1 - x + x}{1 - x + {x}^{2} } \bigg] d x=∫
0
1
tan
−1
[
1−x+x
2
1−x+x
]dx
\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{(1 - x) + x}{1 - x(1 - x)} \bigg] d x=∫
0
1
tan
−1
[
1−x(1−x)
(1−x)+x
]dx
We know
\begin{gathered}\boxed{\tt{ \: {tan}^{ - 1} \frac{x + y}{1 - xy} = {tan}^{ - 1}x + {tan}^{ - 1}y \: }} \\ \end{gathered}
tan
−1
1−xy
x+y
=tan
−1
x+tan
−1
y
Explanation:
Solution−
Given integral is
\rm \: \displaystyle \int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right)d x∫
0
1
cot
−1
(1−x+x
2
)dx
We know that
\begin{gathered}\boxed{\tt{ \: {cot}^{ - 1}x = {tan}^{ - 1} \frac{1}{x} \: }} \\ \end{gathered}
cot
−1
x=tan
−1
x
1
So, using this, we get
\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{1}{1 - x + {x}^{2} } \bigg] d x=∫
0
1
tan
−1
[
1−x+x
2
1
]dx
\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{1 - x + x}{1 - x + {x}^{2} } \bigg] d x=∫
0
1
tan
−1
[
1−x+x
2
1−x+x
]dx
\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{(1 - x) + x}{1 - x(1 - x)} \bigg] d x=∫
0
1
tan
−1
[
1−x(1−x)
(1−x)+x
]dx
We know
\begin{gathered}\boxed{\tt{ \: {tan}^{ - 1} \frac{x + y}{1 - xy} = {tan}^{ - 1}x + {tan}^{ - 1}y \: }} \\ \end{gathered}
tan
−1
1−xy
x+y
=tan
−1
x+tan
−1
y
Explanation:
Solution−
Given integral is
\rm \: \displaystyle \int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right)d x∫
0
1
cot
−1
(1−x+x
2
)dx
We know that
\begin{gathered}\boxed{\tt{ \: {cot}^{ - 1}x = {tan}^{ - 1} \frac{1}{x} \: }} \\ \end{gathered}
cot
−1
x=tan
−1
x
1
So, using this, we get
\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{1}{1 - x + {x}^{2} } \bigg] d x=∫
0
1
tan
−1
[
1−x+x
2
1
]dx
\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{1 - x + x}{1 - x + {x}^{2} } \bigg] d x=∫
0
1
tan
−1
[
1−x+x
2
1−x+x
]dx
\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{(1 - x) + x}{1 - x(1 - x)} \bigg] d x=∫
0
1
tan
−1
[
1−x(1−x)
(1−x)+x
]dx
We know
\begin{gathered}\boxed{\tt{ \: {tan}^{ - 1} \frac{x + y}{1 - xy} = {tan}^{ - 1}x + {tan}^{ - 1}y \: }} \\ \end{gathered}
tan
−1
1−xy
x+y
=tan
−1
x+tan
−1
y
Explanation:
Solution−
Given integral is
\rm \: \displaystyle \int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right)d x∫
0
1
cot
−1
(1−x+x
2
)dx
We know that
\begin{gathered}\boxed{\tt{ \: {cot}^{ - 1}x = {tan}^{ - 1} \frac{1}{x} \: }} \\ \end{gathered}
cot
−1
x=tan
−1
x
1
So, using this, we get
\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{1}{1 - x + {x}^{2} } \bigg] d x=∫
0
1
tan
−1
[
1−x+x
2
1
]dx
\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{1 - x + x}{1 - x + {x}^{2} } \bigg] d x=∫
0
1
tan
−1
[
1−x+x
2
1−x+x
]dx
\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{(1 - x) + x}{1 - x(1 - x)} \bigg] d x=∫
0
1
tan
−1
[
1−x(1−x)
(1−x)+x
]dx
We know
\begin{gathered}\boxed{\tt{ \: {tan}^{ - 1} \frac{x + y}{1 - xy} = {tan}^{ - 1}x + {tan}^{ - 1}y \: }} \\ \end{gathered}
tan
−1
1−xy
x+y
=tan
−1
x+tan
−1
y
Explanation:
Solution−
Given integral is
\rm \: \displaystyle \int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right)d x∫
0
1
cot
−1
(1−x+x
2
)dx
We know that
\begin{gathered}\boxed{\tt{ \: {cot}^{ - 1}x = {tan}^{ - 1} \frac{1}{x} \: }} \\ \end{gathered}
cot
−1
x=tan
−1
x
1
So, using this, we get
\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{1}{1 - x + {x}^{2} } \bigg] d x=∫
0
1
tan
−1
[
1−x+x
2
1
]dx
\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{1 - x + x}{1 - x + {x}^{2} } \bigg] d x=∫
0
1
tan
−1
[
1−x+x
2
1−x+x
]dx
\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{(1 - x) + x}{1 - x(1 - x)} \bigg] d x=∫
0
1
tan
−1
[
1−x(1−x)
(1−x)+x
]dx
We know
\begin{gathered}\boxed{\tt{ \: {tan}^{ - 1} \frac{x + y}{1 - xy} = {tan}^{ - 1}x + {tan}^{ - 1}y \: }} \\ \end{gathered}
tan
−1
1−xy
x+y
=tan
−1
x+tan
−1
y