Math, asked by parii61, 1 month ago

ax^2 +4x-a=0 solve by completing square method?​

Answers

Answered by BilalFNA
7

ANSWER:

a {x}^{2} + 4x - a = 0

a {x}^{2}  + 4x = a

dividing \: by \: \:  a \:  \: on \: both \: sides

 \frac{ax^{2} }{a} +  \frac{4x}{a} =  \frac{a}{a}

 {x}^{2}  +  \frac{4x}{a} = 1

 {(x)}^{2} + 2(x)( \frac{2}{a} ) = 1

adding \:  {( \frac{2}{a} )}^{2} on \: both \: sides

 {(x)}^{2} + 2(x)( \frac{2}{a} ) +  (\frac{ 2 }{a}  )^{2}  = 1 +  ( { \frac{2}{a} })^{2}

using \: formula \:  {(a + b)}^{2} =  {a}^{2} + 2ab +  {b}^{2}

 {(x +  \frac{2}{a}) }^{2}  = 1 +  \frac{4}{ {a}^{2} }

 {(x +  \frac{2}{a}) }^{2}  =  \frac{ {a}^{2} }{ {a}^{2} }  +  \frac{4}{ {a}^{2} }

 {(x +  \frac{2}{a}) }^{2}  =  \frac{ {a}^{2} + 4 }{ {a}^{2} }

taking \: squre \: root \: on \: both \: sides

 \sqrt{ {(x +  \frac{2}{a}) }^{2} }  =  \sqrt{ \frac{ {a}^{2} + 4 }{ {a}^{2} } }

x +  \frac{2}{a} =  \frac{ + }{} \frac{ \sqrt{ {a}^{2}  + 4} }{ \sqrt{ {a}^{2} } }

x  =   -  \frac{2}{a} \frac{ + }{} \frac{ \sqrt{ {a}^{2}  + 4} }{a}

x  =    \frac{  - 2 \frac{ + }{} \sqrt{ {a}^{2}  + 4} }{a}

I hope it helps you. Please mark me as BRAINLIEST if you like.

Similar questions