Math, asked by Raaj7587, 10 months ago

ax + by^{2} = cosy dy/dx ज्ञात कीजिए

Answers

Answered by Sharad001
122

Question :-

 \to \sf if \: ax + b {y}^{2}  =  \cos y \:  find\:  \frac{dy}{dx}

Answer :-

\boxed{ \to \sf \frac{dy}{dx}   =  \frac{ - a}{2by +  \sin y} } \:

Solution :-

We have ,

 \to \sf \: ax + b {y}^{2}  =  \cos y \\  \\ \sf  \red{differentiate  \: }\green{ with} \blue{ \:  respect }\pink{ \:  to \: x} \:  \\  \\  \to \sf  \frac{d}{dx} ax +  \frac{d}{dx} b {y}^{2}  =  \frac{d}{dx}  \cos y \\  \\   \:  \:  \: \boxed{ \because \sf  \frac{d}{dx}  {x}^{n} = n {x}^{n - 1}   \: and \:  \frac{d}{dx}  \cos x =  -  \sin x} \\  \\  \to \sf \: a \:  + 2by \frac{dy}{dx}  =  -  \sin y \frac{dy}{dx}  \\  \\  \to \sf 2by \frac{dy}{dx}  +  \sin y \frac{dy}{dx}  =  - a \\  \\  \to \sf  \frac{dy}{dx} \{2by +  \sin y \} =  - a \\  \\  \boxed{ \to \sf \frac{dy}{dx}   =  \frac{ - a}{2by +  \sin y} }

Answered by amitnrw
3

dy/dx = -a/(2by + Siny)  ax + by² = cosy

Step-by-step explanation:

dy/dx ज्ञात कीजिए

ax + by² = Cosy

a + b(2y) dy/dx  = - Siny (dy/dx)

=> a + 2by(dy/dx)  + Siny(dy/dx) = 0

=> (dy/dx)(2by + siny) = -a

=> dy/dx = - a/(2by + Siny)

और अधिक जानें :

sin(x²+5)"

brainly.in/question/15286193

sin (ax+b) फलन का अवकलन कीजिए

brainly.in/question/15286166

Similar questions