ax+by=a-b,bx+ay=a+b by cross multiplication method.
Answers
Answer:
x=2ab
y=a-2a^2
Step-by-step explanation:
ax+by=a-b
bx+ay=a+b
a1=a b1=b c1=a-b
a2=b b2=a c2=a+b
x/ab+b^2-a^2+ab = y/a^2+ab-ab+b^2 = 1/a^2-b^2
x/2ab+b^2-a^2 = y/a^2+b^2 = 1/a^2-b^2
x/2ab+b^2-a^2=1/a^2-b^2
(a^2-b^2)x = 2ab+b^2-a^2
(a+b)(b-a)x = 2ab+(a+b)(b-a)
x=2ab
substitute x in eq.1
2a^b+by=a-b
y=a-b-2a^b/b
y=b(a-2a^2)/b
y=a-2a^2
Answer:
ax + by = a-b becomes
(ax + by)/(a - b) = 1
bx - ay = a + b becomes
(bx-ay)/(a+b) = 1
So now we can equate the two:
(ax + by)/(a-b) = (bx - ay)/(a+b)
So by cross multiplication:
(ax + by)(a + b) = (bx - ay)(a - b)
a^2x + abx + aby + b^2y = abx - b^2x - a^2y + aby
a^2x + b^2y = -b^2x - a^2y
a^2x + b^2x = -a^2y - b^2y
(a^2 + b^2)x = -(a^2 + b^2)y
x = -y
Substituting into the first equation:
-ay + by = a-b
-(a - b)y = a-b
y = -1
So x = 1