ax-by=a2+b2, x+y=2a solve by cross multiplication method
Answers
Answer:
Solution is
x=a+b
y=a-b
Step-by-step explanation:
Given equations are
By cross multiplication rule,
Also,
Solution is
x=a+b
y=a-b
Step-by-step explanation:
Given equations are
ax-by-(a^2+b^2)=0ax−by−(a
2
+b
2
)=0
x+y-2a=0x+y−2a=0
By cross multiplication rule,
\frac{x}{2ab+(a^2+b^2)}=\frac{y}{-(a^2+b^2)+2a^2}=\frac{1}{a+b}
2ab+(a
2
+b
2
)
x
=
−(a
2
+b
2
)+2a
2
y
=
a+b
1
\implies\:\frac{x}{2ab+(a^2+b^2)}=\frac{1}{a+b}⟹
2ab+(a
2
+b
2
)
x
=
a+b
1
\implies\:\frac{x}{(a+b)^2}=\frac{1}{a+b}⟹
(a+b)
2
x
=
a+b
1
\implies\:x=\frac{(a+b)^2}{a+b}⟹x=
a+b
(a+b)
2
\implies\:x=a+b⟹x=a+b
Also,
\frac{y}{-(a^2+b^2)+2a^2}=\frac{1}{a+b}
−(a
2
+b
2
)+2a
2
y
=
a+b
1
\implies\:\frac{y}{-a^2-b^2+2a^2}=\frac{1}{a+b}⟹
−a
2
−b
2
+2a
2
y
=
a+b
1
\implies\:\frac{y}{a^2-b^2}=\frac{1}{a+b}⟹
a
2
−b
2
y
=
a+b
1
\implies\:\frac{y}{(a+b)(a-b)}=\frac{1}{a+b}⟹
(a+b)(a−b)
y
=
a+b
1
\implies\:y=a-b⟹y=a−b