Math, asked by anilverma4976, 7 months ago

Bो
(a) Find the co-ordinates of the
point of trisection of the line
segment joining (
3, -3) and (9,9)​

Answers

Answered by MaheswariS
3

\textbf{Given:}

\textsf{Points are (3,-3) and (9,9)}

\textbf{To find:}

\textsf{Point of trisection of the line segment joining the given points}

\textbf{Solution:}

\textsf{Let the given points be A(3,-3) and B(9,9)}

\textsf{Let P and Q be the points of trisection of line segment AB}

\textsf{Since P divides AB internally in the ratio 1:2, coordinates of P are}

\mathsf{\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)}

\mathsf{\left(\dfrac{1(9)+2(3)}{1+2},\dfrac{1(9)+2(-3)}{1+2}\right)}

\mathsf{\left(\dfrac{9+6}{3},\dfrac{9-6}{3}\right)}

\mathsf{\left(\dfrac{15}{3},\dfrac{3}{3}\right)}

\mathsf{(5,1)}

\textsf{Since Q divides AB internally in the ratio 2:1, coordinates of Q are}

\mathsf{\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)}

\mathsf{\left(\dfrac{2(9)+1(3)}{2+1},\dfrac{2(9)+1(-3)}{2+1}\right)}

\mathsf{\left(\dfrac{18+3}{3},\dfrac{18-3}{3}\right)}

\mathsf{\left(\dfrac{21}{3},\dfrac{15}{3}\right)}

\mathsf{(7,5)}

\textbf{Answer:}

\textsf{Points of trisection are (5,1) and (7,5)}

\textbf{Find more:}

The line segment joining the points (3,-1) and (-6,5) is trisected. find the coordinate of the point of trisection.

https://brainly.in/question/8416219

Find the point of trisection of the line segment AB, where A (-6, 11) and B (10, -3).

https://brainly.in/question/20696480

Similar questions