Math, asked by Itsdavinder458, 4 days ago

B ABCD is a quadrilateral. Prove that: AC - BC < AB - a. b. AC - AD < CD D AB + BC + AD + CD > 2AC C.

Answers

Answered by AwlinSajan
3

Answer:

⇒ (AB + BC + CA + AD) > (AC + BD)

Step-by-step explanation:

ABCD is a quadrilateral and AC, and BD are the diagonals.

Sum of the two sides of a triangle is greater than the third side.

So, considering the triangle ABC, BCD, CAD and BAD, we get

AB + BC > AC

CD + AD > AC

AB + AD > BD

BC + CD > BD

Adding all the above equations,

2(AB + BC + CA + AD) > 2(AC + BD)

⇒ 2(AB + BC + CA + AD) > 2(AC + BD)

⇒ (AB + BC + CA + AD) > (AC + BD)

HENCE, PROVED

mark me as brainlist

Similar questions