Math, asked by aayushprasad942, 11 months ago

(b-acosc)sina = acosAsinC

Answers

Answered by Swarup1998
25

(b - a cosC) sinA = a cosA sinC

Step-by-step explanation:

For any triangles ABC with sides a, b, c assigned to the opposite sides of angles A, B, C, we have the following relations,

a/sinA = b/sinB = c/sinC ..... (1)

cosA = (b² + c² - a²)/(2bc) ..... (2)

cosB = (c² + a² - b²)/(2ca) ..... (3)

cosC = (a² + b² - c²)/(2ab) ..... (4)

From (1), we can write

sinA = ka, sinB = kb, sinC = kc .... (5),

where k is any arbitrary constant

Now, (b - a cosC) sinA

= {b - a (a² + b² - c²)/(2ab)} . ka [by (3), (5)]

= {b - (a² + b² - c²)/(2b)} . ka

= (2b² - a² - b² + c²)/(2b) . ka

= (b² + c² - a²)/(2bc) . kac

= a . (b² + c² - a²)/(2bc) . kc

= a cosA sinC [by (1), (5)]

Hence proved.

Other trigonometric problems:

https://brainly.in/question/13320789

https://brainly.in/question/13044173

https://brainly.in/question/13042939

https://brainly.in/question/13022378

https://brainly.in/question/13089965

Answered by lublana
10

Answer with Step-by-step explanation:

We know that

Sine law:\frac{Sin A}{a}=\frac{Sin B}{b}=\frac{Sin C}{c}

\frac{Sin A}{a}=\frac{Sin B}{b}=\frac{Sin C}{c}=k

Sin A=ka, Sin B=kb, Sin C=ck

Cosine law:

 Cos A=\frac{b^2+c^2-a^2}{2bc}

 Cos B=\frac{a^2+c^2-b^2}{2ac}

 Cos C=\frac{a^2+b^2-c^2}{2ab}

LHS

(b-aCos C)Sin A

Substitute the values then we get

(b-a\times \frac{(a^2+b^2-c^2)}{2ab})\times ka

(b-\frac{a^2+b^2-c^2}{2b})ka

\frac{(2b^2-a^2-b^2+c^2)}{2bc}\times kac

a\times \frac{(b^2+c^2-a^2)}{2bc}(kc)

Substitute the values then we get

aCos ASin C

LHS=RHS

Hence, proved.

#Learns more:

https://brainly.in/question/3073959

Similar questions