b-[b-(a+b)-{b-(b-a+b)}+2a]
Answers
Answered by
10
ANSWER
...........
GIVEN THAT =. b-[b-(a+b)-{b-(b-a+b)}+2a]
====================
b - [b - (a + b) - {b - (b- [a - b])} + 2a] .... as I read it
= b - [b - (a + b) - {b - (b - a + b)} + 2a] .... distributive property on -[a - b]
= b - [b - (a + b) - {b - (2b - a)} + 2a] .... simplify b-a+b = 2b-a
= b - [b - (a + b) - {b - 2b + a} + 2a] .... distributive property on -(2b - a)
= b - [b - (a + b) - {a - b} + 2a] .... simplify b - 2b + a = a - b
= b - [b - a - b - a + b + 2a] .... distributive propery on both -(a + b) and -{a - b}
= b - [b] .... simplified b-b+b = b and -a -a + 2a = 0
= 0
...........
GIVEN THAT =. b-[b-(a+b)-{b-(b-a+b)}+2a]
====================
b - [b - (a + b) - {b - (b- [a - b])} + 2a] .... as I read it
= b - [b - (a + b) - {b - (b - a + b)} + 2a] .... distributive property on -[a - b]
= b - [b - (a + b) - {b - (2b - a)} + 2a] .... simplify b-a+b = 2b-a
= b - [b - (a + b) - {b - 2b + a} + 2a] .... distributive property on -(2b - a)
= b - [b - (a + b) - {a - b} + 2a] .... simplify b - 2b + a = a - b
= b - [b - a - b - a + b + 2a] .... distributive propery on both -(a + b) and -{a - b}
= b - [b] .... simplified b-b+b = b and -a -a + 2a = 0
= 0
Answered by
4
Answer:
your answer is in the attachment
Step-by-step explanation:
hope it's help you XD
Attachments:
Similar questions